10
150
(K10n
9
)
A knot diagram
1
Linearized knot diagam
9 4 1 7 4 10 5 2 7 3
Solving Sequence
1,4
3 2
7,10
6 5 8 9
c
3
c
2
c
10
c
6
c
5
c
7
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h5218u
16
13845u
15
+ ··· + 24209b 23873, 14691u
16
23006u
15
+ ··· + 24209a 62170,
u
17
2u
16
+ ··· 3u 1i
I
u
2
= hb 1, u
2
+ a + u 1, u
3
u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 20 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h5218u
16
13845u
15
+ · · · + 24209b 23873, 14691u
16
23006u
15
+
· · · + 24209a 62170, u
17
2u
16
+ · · · 3u 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
3
=
1
u
2
a
2
=
u
2
+ 1
u
2
a
7
=
0.606840u
16
+ 0.950308u
15
+ ··· 2.86026u + 2.56805
0.215540u
16
+ 0.571895u
15
+ ··· 0.628196u + 0.986121
a
10
=
u
u
3
+ u
a
6
=
0.650337u
16
+ 1.05824u
15
+ ··· 2.69995u + 2.65839
0.137841u
16
+ 0.712421u
15
+ ··· 0.487215u + 1.05552
a
5
=
0.788178u
16
+ 1.77066u
15
+ ··· 3.18716u + 3.71391
0.137841u
16
+ 0.712421u
15
+ ··· 0.487215u + 1.05552
a
8
=
0.421785u
16
1.78739u
15
+ ··· 0.282003u 1.72217
0.844603u
16
+ 0.281053u
15
+ ··· 2.71804u 0.861209
a
9
=
0.396877u
16
+ 1.39225u
15
+ ··· 0.955099u + 1.13198
0.271015u
16
+ 0.327482u
15
+ ··· + 1.53959u + 0.667892
(ii) Obstruction class = 1
(iii) Cusp Shapes =
76049
24209
u
16
+
104431
24209
u
15
+ ···
330360
24209
u
115800
24209
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
17
2u
16
+ ··· + u 1
c
2
u
17
+ 12u
16
+ ··· + 7u + 1
c
3
, c
10
u
17
2u
16
+ ··· 3u 1
c
4
, c
7
u
17
4u
16
+ ··· + 16u 1
c
5
u
17
+ 22u
16
+ ··· + 256u + 1
c
6
, c
9
u
17
+ 3u
16
+ ··· + 20u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
17
+ 18y
15
+ ··· + 7y 1
c
2
y
17
12y
16
+ ··· + 155y 1
c
3
, c
10
y
17
12y
16
+ ··· + 7y 1
c
4
, c
7
y
17
22y
16
+ ··· + 256y 1
c
5
y
17
50y
16
+ ··· + 60796y 1
c
6
, c
9
y
17
+ 21y
16
+ ··· + 976y 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.876782 + 0.644726I
a = 0.092257 0.124101I
b = 0.568271 + 0.184291I
2.13008 2.53959I 0.76560 + 1.98769I
u = 0.876782 0.644726I
a = 0.092257 + 0.124101I
b = 0.568271 0.184291I
2.13008 + 2.53959I 0.76560 1.98769I
u = 1.089060 + 0.132960I
a = 0.02578 2.03485I
b = 0.834229 0.235726I
3.18058 + 0.67411I 10.63151 + 5.49435I
u = 1.089060 0.132960I
a = 0.02578 + 2.03485I
b = 0.834229 + 0.235726I
3.18058 0.67411I 10.63151 5.49435I
u = 0.026050 + 1.128120I
a = 1.354380 + 0.277932I
b = 1.63657 + 0.18009I
8.13487 + 4.20505I 7.98094 2.47792I
u = 0.026050 1.128120I
a = 1.354380 0.277932I
b = 1.63657 0.18009I
8.13487 4.20505I 7.98094 + 2.47792I
u = 0.819663
a = 0.742247
b = 0.0636841
1.19406 8.42610
u = 1.229710 + 0.222583I
a = 0.189457 + 1.004150I
b = 0.83094 + 1.19370I
4.39628 4.11745I 11.29745 + 5.99012I
u = 1.229710 0.222583I
a = 0.189457 1.004150I
b = 0.83094 1.19370I
4.39628 + 4.11745I 11.29745 5.99012I
u = 1.26347
a = 0.266454
b = 1.87117
6.78936 15.0240
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.39748 + 0.52974I
a = 0.069718 1.260110I
b = 1.72864 0.39180I
12.6337 10.0814I 9.96961 + 5.13034I
u = 1.39748 0.52974I
a = 0.069718 + 1.260110I
b = 1.72864 + 0.39180I
12.6337 + 10.0814I 9.96961 5.13034I
u = 1.39973 + 0.55866I
a = 0.294421 + 0.977752I
b = 1.71162 + 0.05597I
12.44690 + 1.83083I 10.41430 0.85064I
u = 1.39973 0.55866I
a = 0.294421 0.977752I
b = 1.71162 0.05597I
12.44690 1.83083I 10.41430 + 0.85064I
u = 0.057966 + 0.464686I
a = 1.90019 0.95414I
b = 0.504075 0.513259I
0.61170 + 1.48793I 4.64409 4.66231I
u = 0.057966 0.464686I
a = 1.90019 + 0.95414I
b = 0.504075 + 0.513259I
0.61170 1.48793I 4.64409 + 4.66231I
u = 0.306131
a = 3.40681
b = 1.14424
2.29521 1.20570
6
II. I
u
2
= hb 1, u
2
+ a + u 1, u
3
u
2
+ 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
3
=
1
u
2
a
2
=
u
2
+ 1
u
2
a
7
=
u
2
u + 1
1
a
10
=
u
u
2
+ u + 1
a
6
=
u
2
u + 1
1
a
5
=
u
2
u + 2
1
a
8
=
1
0
a
9
=
u
u
2
+ u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
+ 8u 16
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
+ u
2
+ 2u + 1
c
2
, c
8
u
3
u
2
+ 2u 1
c
3
u
3
u
2
+ 1
c
4
(u 1)
3
c
5
, c
7
(u + 1)
3
c
6
, c
9
u
3
c
10
u
3
+ u
2
1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
8
y
3
+ 3y
2
+ 2y 1
c
3
, c
10
y
3
y
2
+ 2y 1
c
4
, c
5
, c
7
(y 1)
3
c
6
, c
9
y
3
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.337641 + 0.562280I
b = 1.00000
1.37919 2.82812I 9.19557 + 4.65175I
u = 0.877439 0.744862I
a = 0.337641 0.562280I
b = 1.00000
1.37919 + 2.82812I 9.19557 4.65175I
u = 0.754878
a = 2.32472
b = 1.00000
2.75839 22.6090
10
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
+ 2u + 1)(u
17
2u
16
+ ··· + u 1)
c
2
(u
3
u
2
+ 2u 1)(u
17
+ 12u
16
+ ··· + 7u + 1)
c
3
(u
3
u
2
+ 1)(u
17
2u
16
+ ··· 3u 1)
c
4
((u 1)
3
)(u
17
4u
16
+ ··· + 16u 1)
c
5
((u + 1)
3
)(u
17
+ 22u
16
+ ··· + 256u + 1)
c
6
, c
9
u
3
(u
17
+ 3u
16
+ ··· + 20u + 8)
c
7
((u + 1)
3
)(u
17
4u
16
+ ··· + 16u 1)
c
8
(u
3
u
2
+ 2u 1)(u
17
2u
16
+ ··· + u 1)
c
10
(u
3
+ u
2
1)(u
17
2u
16
+ ··· 3u 1)
11
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y
3
+ 3y
2
+ 2y 1)(y
17
+ 18y
15
+ ··· + 7y 1)
c
2
(y
3
+ 3y
2
+ 2y 1)(y
17
12y
16
+ ··· + 155y 1)
c
3
, c
10
(y
3
y
2
+ 2y 1)(y
17
12y
16
+ ··· + 7y 1)
c
4
, c
7
((y 1)
3
)(y
17
22y
16
+ ··· + 256y 1)
c
5
((y 1)
3
)(y
17
50y
16
+ ··· + 60796y 1)
c
6
, c
9
y
3
(y
17
+ 21y
16
+ ··· + 976y 64)
12