12n
0262
(K12n
0262
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 10 12 11 3 7 5 9 6
Solving Sequence
3,8
4
9,11
12 7 10 6 1 5 2
c
3
c
8
c
11
c
7
c
9
c
6
c
12
c
5
c
2
c
1
, c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.84691 × 10
298
u
66
1.95567 × 10
298
u
65
+ ··· + 2.05840 × 10
302
b + 1.32241 × 10
302
,
1.98179 × 10
298
u
66
+ 3.24951 × 10
298
u
65
+ ··· + 4.11679 × 10
302
a 1.22918 × 10
303
,
u
67
+ u
66
+ ··· + 43008u 25088i
I
u
2
= h−5673781u
13
878483u
12
+ ··· + 3057583b + 1514771,
2814143u
13
1845304u
12
+ ··· + 3057583a 4471166,
u
14
+ 3u
12
3u
11
5u
10
+ 4u
9
11u
8
+ 8u
7
+ 12u
6
+ 8u
5
+ 20u
4
+ 6u
2
u + 1i
I
v
1
= ha, 579074v
8
+ 1101995v
7
+ ··· + 5353327b + 7952402,
v
9
v
8
8v
7
+ v
6
+ 33v
5
+ 23v
4
14v
3
2v
2
+ 3v 7i
* 3 irreducible components of dim
C
= 0, with total 90 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.85 × 10
298
u
66
1.96 × 10
298
u
65
+ · · · + 2.06 × 10
302
b + 1.32 ×
10
302
, 1.98 × 10
298
u
66
+ 3.25 × 10
298
u
65
+ · · · + 4.12 × 10
302
a 1.23 ×
10
303
, u
67
+ u
66
+ · · · + 43008u 25088i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
9
=
u
u
a
11
=
0.0000481392u
66
0.0000789331u
65
+ ··· + 5.33036u + 2.98578
0.0000897259u
66
+ 0.0000950094u
65
+ ··· 2.62585u 0.642448
a
12
=
0.000118460u
66
0.000172623u
65
+ ··· + 7.23750u + 3.89089
0.0000194055u
66
+ 1.31979 × 10
6
u
65
+ ··· 0.718714u + 0.262662
a
7
=
0.000161293u
66
+ 0.000149952u
65
+ ··· 9.45357u + 1.04345
0.0000806828u
66
+ 0.000116961u
65
+ ··· + 1.08719u 2.12829
a
10
=
0.000137853u
66
0.000195770u
65
+ ··· + 3.84559u + 4.00787
0.0000222838u
66
+ 0.0000208994u
65
+ ··· + 1.86058u 0.321979
a
6
=
0.000161217u
66
+ 0.000186979u
65
+ ··· 5.83761u 2.26918
0.000148461u
66
+ 0.000256361u
65
+ ··· + 2.53370u 6.92210
a
1
=
0.0000197759u
66
0.0000240684u
65
+ ··· + 1.14983u + 0.135437
3.32757 × 10
6
u
66
+ 1.67327 × 10
7
u
65
+ ··· + 0.785198u 0.156001
a
5
=
0.0000164483u
66
+ 0.0000242357u
65
+ ··· 0.364631u 0.291438
7.60200 × 10
6
u
66
7.07139 × 10
6
u
65
+ ··· + 0.707461u 0.351370
a
2
=
0.0000164483u
66
0.0000242357u
65
+ ··· + 0.364631u + 0.291438
3.32757 × 10
6
u
66
+ 1.67327 × 10
7
u
65
+ ··· + 0.785198u 0.156001
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.000336583u
66
+ 0.000559671u
65
+ ··· 0.882700u 3.59196
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
67
+ 78u
66
+ ··· + 171200u + 2401
c
2
, c
4
u
67
16u
66
+ ··· + 120u 49
c
3
, c
8
u
67
+ u
66
+ ··· + 43008u 25088
c
5
, c
10
u
67
2u
66
+ ··· + 3200u 773
c
6
, c
12
u
67
3u
66
+ ··· + 781u 209
c
7
u
67
+ u
66
+ ··· + 566773u 256243
c
9
u
67
+ 4u
66
+ ··· 2u 1
c
11
u
67
+ 12u
66
+ ··· 77902u 10969
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
67
162y
66
+ ··· + 5062883876y 5764801
c
2
, c
4
y
67
78y
66
+ ··· + 171200y 2401
c
3
, c
8
y
67
+ 63y
66
+ ··· 2491940864y 629407744
c
5
, c
10
y
67
+ 62y
66
+ ··· 18480042y 597529
c
6
, c
12
y
67
+ 33y
66
+ ··· 240251y 43681
c
7
y
67
+ 43y
66
+ ··· + 161121782381y 65660475049
c
9
y
67
10y
66
+ ··· 44y 1
c
11
y
67
+ 16y
66
+ ··· 1081596550y 120318961
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.972237 + 0.280854I
a = 0.933702 0.142151I
b = 0.109882 0.192634I
3.39425 2.09087I 8.43522 + 3.94985I
u = 0.972237 0.280854I
a = 0.933702 + 0.142151I
b = 0.109882 + 0.192634I
3.39425 + 2.09087I 8.43522 3.94985I
u = 0.111044 + 1.030770I
a = 0.537195 + 0.271868I
b = 1.82570 + 1.10431I
0.89656 5.19617I 2.00000 + 8.56770I
u = 0.111044 1.030770I
a = 0.537195 0.271868I
b = 1.82570 1.10431I
0.89656 + 5.19617I 2.00000 8.56770I
u = 0.502448 + 0.771343I
a = 0.284361 + 0.812390I
b = 0.879173 + 0.333242I
0.42745 + 2.04731I 1.79133 2.30943I
u = 0.502448 0.771343I
a = 0.284361 0.812390I
b = 0.879173 0.333242I
0.42745 2.04731I 1.79133 + 2.30943I
u = 0.163401 + 0.813880I
a = 0.463100 + 0.420844I
b = 1.144220 + 0.605865I
1.58473 + 1.12240I 2.95098 3.87144I
u = 0.163401 0.813880I
a = 0.463100 0.420844I
b = 1.144220 0.605865I
1.58473 1.12240I 2.95098 + 3.87144I
u = 0.687972 + 0.429990I
a = 0.466340 + 0.203651I
b = 0.705353 0.489291I
2.34582 + 0.79184I 1.70277 + 1.36728I
u = 0.687972 0.429990I
a = 0.466340 0.203651I
b = 0.705353 + 0.489291I
2.34582 0.79184I 1.70277 1.36728I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.423056 + 1.121960I
a = 0.340034 + 1.265540I
b = 0.758978 + 0.645501I
4.49098 4.90499I 0
u = 0.423056 1.121960I
a = 0.340034 1.265540I
b = 0.758978 0.645501I
4.49098 + 4.90499I 0
u = 0.683441 + 0.994440I
a = 0.700678 + 0.584635I
b = 1.65806 0.19823I
2.72054 + 1.47592I 0
u = 0.683441 0.994440I
a = 0.700678 0.584635I
b = 1.65806 + 0.19823I
2.72054 1.47592I 0
u = 0.412259 + 0.668041I
a = 0.952707 + 0.932487I
b = 2.33800 + 1.37488I
0.01538 + 1.90218I 1.03416 1.99152I
u = 0.412259 0.668041I
a = 0.952707 0.932487I
b = 2.33800 1.37488I
0.01538 1.90218I 1.03416 + 1.99152I
u = 0.734728 + 0.191087I
a = 1.088980 0.815803I
b = 0.029495 + 0.284816I
3.56178 + 1.95197I 9.44446 1.83557I
u = 0.734728 0.191087I
a = 1.088980 + 0.815803I
b = 0.029495 0.284816I
3.56178 1.95197I 9.44446 + 1.83557I
u = 0.705362 + 0.112303I
a = 0.447657 0.096628I
b = 0.57181 1.47755I
0.78374 + 3.24647I 3.36554 8.05825I
u = 0.705362 0.112303I
a = 0.447657 + 0.096628I
b = 0.57181 + 1.47755I
0.78374 3.24647I 3.36554 + 8.05825I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.489130 + 0.496557I
a = 0.999235 + 0.996408I
b = 1.080650 + 0.076642I
0.85096 + 2.02536I 5.69785 3.31418I
u = 0.489130 0.496557I
a = 0.999235 0.996408I
b = 1.080650 0.076642I
0.85096 2.02536I 5.69785 + 3.31418I
u = 0.058657 + 0.664653I
a = 0.66387 2.11195I
b = 1.24815 0.75030I
0.17719 3.22158I 2.38086 + 5.47011I
u = 0.058657 0.664653I
a = 0.66387 + 2.11195I
b = 1.24815 + 0.75030I
0.17719 + 3.22158I 2.38086 5.47011I
u = 0.028062 + 0.629541I
a = 1.38866 + 0.32024I
b = 1.85271 1.86384I
3.79798 0.21805I 3.18632 4.76372I
u = 0.028062 0.629541I
a = 1.38866 0.32024I
b = 1.85271 + 1.86384I
3.79798 + 0.21805I 3.18632 + 4.76372I
u = 0.580709 + 0.074213I
a = 1.64498 + 1.24717I
b = 0.1199620 + 0.0262995I
2.35238 6.89299I 11.67033 + 2.73841I
u = 0.580709 0.074213I
a = 1.64498 1.24717I
b = 0.1199620 0.0262995I
2.35238 + 6.89299I 11.67033 2.73841I
u = 0.568924 + 0.015800I
a = 1.15399 1.27396I
b = 0.137363 0.361208I
2.33563 2.09946I 2.27732 + 3.69468I
u = 0.568924 0.015800I
a = 1.15399 + 1.27396I
b = 0.137363 + 0.361208I
2.33563 + 2.09946I 2.27732 3.69468I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.22902 + 1.42563I
a = 1.41393 + 0.24587I
b = 1.77271 + 0.17285I
4.88346 3.38279I 0
u = 0.22902 1.42563I
a = 1.41393 0.24587I
b = 1.77271 0.17285I
4.88346 + 3.38279I 0
u = 0.06118 + 1.47148I
a = 1.178520 0.232850I
b = 1.81942 0.53750I
7.03108 4.31642I 0
u = 0.06118 1.47148I
a = 1.178520 + 0.232850I
b = 1.81942 + 0.53750I
7.03108 + 4.31642I 0
u = 0.116938 + 0.471533I
a = 1.76704 + 0.77132I
b = 0.88022 + 1.53954I
0.98108 + 2.41958I 3.63595 + 0.97039I
u = 0.116938 0.471533I
a = 1.76704 0.77132I
b = 0.88022 1.53954I
0.98108 2.41958I 3.63595 0.97039I
u = 1.50349 + 0.34050I
a = 0.256622 0.478404I
b = 0.222034 + 0.138144I
2.74618 + 3.31023I 0
u = 1.50349 0.34050I
a = 0.256622 + 0.478404I
b = 0.222034 0.138144I
2.74618 3.31023I 0
u = 1.55291 + 0.23943I
a = 0.163132 1.062710I
b = 0.084878 0.518349I
8.96576 + 1.05371I 0
u = 1.55291 0.23943I
a = 0.163132 + 1.062710I
b = 0.084878 + 0.518349I
8.96576 1.05371I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.52715 + 1.48204I
a = 0.916886 0.098363I
b = 1.357000 0.270061I
6.16260 2.01828I 0
u = 0.52715 1.48204I
a = 0.916886 + 0.098363I
b = 1.357000 + 0.270061I
6.16260 + 2.01828I 0
u = 0.413083
a = 1.65958
b = 0.141582
0.931638 11.2120
u = 0.14745 + 1.66191I
a = 0.15458 1.63422I
b = 0.348487 0.802841I
8.02419 + 4.33010I 0
u = 0.14745 1.66191I
a = 0.15458 + 1.63422I
b = 0.348487 + 0.802841I
8.02419 4.33010I 0
u = 0.45724 + 1.63971I
a = 0.794772 0.109984I
b = 1.92407 + 0.56192I
6.70242 + 8.43737I 0
u = 0.45724 1.63971I
a = 0.794772 + 0.109984I
b = 1.92407 0.56192I
6.70242 8.43737I 0
u = 0.05684 + 1.70857I
a = 0.671485 + 0.613787I
b = 1.194770 0.506092I
12.22050 + 0.78224I 0
u = 0.05684 1.70857I
a = 0.671485 0.613787I
b = 1.194770 + 0.506092I
12.22050 0.78224I 0
u = 0.13255 + 1.73913I
a = 0.910845 + 0.114746I
b = 1.80242 + 0.30695I
10.39740 2.64649I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.13255 1.73913I
a = 0.910845 0.114746I
b = 1.80242 0.30695I
10.39740 + 2.64649I 0
u = 0.41326 + 1.75472I
a = 0.961322 0.083022I
b = 1.83983 0.48405I
5.00803 + 10.48120I 0
u = 0.41326 1.75472I
a = 0.961322 + 0.083022I
b = 1.83983 + 0.48405I
5.00803 10.48120I 0
u = 0.65145 + 1.69788I
a = 1.342150 0.141007I
b = 2.08846 0.33679I
14.9522 + 8.9665I 0
u = 0.65145 1.69788I
a = 1.342150 + 0.141007I
b = 2.08846 + 0.33679I
14.9522 8.9665I 0
u = 0.92464 + 1.58340I
a = 0.930597 + 0.161778I
b = 1.45672 + 0.17040I
12.8012 + 7.6595I 0
u = 0.92464 1.58340I
a = 0.930597 0.161778I
b = 1.45672 0.17040I
12.8012 7.6595I 0
u = 0.91168 + 1.66821I
a = 1.132070 0.045052I
b = 2.09892 0.39558I
12.2648 16.4135I 0
u = 0.91168 1.66821I
a = 1.132070 + 0.045052I
b = 2.09892 + 0.39558I
12.2648 + 16.4135I 0
u = 0.07685 + 1.90361I
a = 0.784906 + 0.030539I
b = 1.58347 0.28609I
5.56017 2.92233I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.07685 1.90361I
a = 0.784906 0.030539I
b = 1.58347 + 0.28609I
5.56017 + 2.92233I 0
u = 1.91592 + 0.19283I
a = 0.014025 + 0.880781I
b = 0.347688 + 0.042615I
7.74590 + 6.82406I 0
u = 1.91592 0.19283I
a = 0.014025 0.880781I
b = 0.347688 0.042615I
7.74590 6.82406I 0
u = 0.29235 + 2.06576I
a = 0.585168 + 0.348851I
b = 1.75404 0.52002I
13.6589 4.4760I 0
u = 0.29235 2.06576I
a = 0.585168 0.348851I
b = 1.75404 + 0.52002I
13.6589 + 4.4760I 0
u = 0.73570 + 2.03169I
a = 0.755689 + 0.211036I
b = 1.67913 + 0.00462I
14.4098 3.1017I 0
u = 0.73570 2.03169I
a = 0.755689 0.211036I
b = 1.67913 0.00462I
14.4098 + 3.1017I 0
11
II.
I
u
2
= h−5.67 × 10
6
u
13
8.78 × 10
5
u
12
+ · · · + 3.06 × 10
6
b + 1.51 × 10
6
, 2.81 ×
10
6
u
13
1.85× 10
6
u
12
+ · · · + 3.06 × 10
6
a 4.47 × 10
6
, u
14
+ 3u
12
+ · · · u + 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
9
=
u
u
a
11
=
0.920382u
13
+ 0.603517u
12
+ ··· + 2.27554u + 1.46232
1.85564u
13
+ 0.287313u
12
+ ··· + 6.16967u 0.495415
a
12
=
0.936012u
13
+ 0.704950u
12
+ ··· + 1.02408u + 1.77852
1.87127u
13
+ 0.388745u
12
+ ··· + 4.91821u 0.179210
a
7
=
0.154016u
13
+ 0.0867479u
12
+ ··· + 5.44332u 0.520875
0.238361u
13
+ 0.739303u
12
+ ··· + 6.37952u 0.597333
a
10
=
0.920382u
13
+ 0.603517u
12
+ ··· + 3.27554u + 1.46232
1.88950u
13
+ 0.545803u
12
+ ··· + 6.90949u + 0.157140
a
6
=
1.14706u
13
0.349611u
12
+ ··· + 4.21100u 1.35422
0.619057u
13
0.300574u
12
+ ··· + 2.87166u 2.89300
a
1
=
0.501461u
13
0.0528928u
12
+ ··· + 0.240764u 0.0867479
0.347374u
13
0.00297130u
12
+ ··· + 0.259964u 0.721149
a
5
=
0.154087u
13
0.0499215u
12
+ ··· 0.0191998u + 0.634401
0.305180u
13
+ 0.0308839u
12
+ ··· 0.0559553u + 0.671228
a
2
=
0.154087u
13
0.0499215u
12
+ ··· 0.0191998u + 0.634401
0.347374u
13
0.00297130u
12
+ ··· + 0.259964u 0.721149
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1775462
3057583
u
13
19500832
3057583
u
12
+ ···
38299827
3057583
u
57496355
3057583
12
(iv) u-Polynomials at the component
13
Crossings u-Polynomials at each crossing
c
1
u
14
14u
13
+ ··· 5u + 1
c
2
u
14
+ 6u
13
+ ··· 3u + 1
c
3
u
14
+ 3u
12
+ ··· u + 1
c
4
u
14
6u
13
+ ··· + 3u + 1
c
5
u
14
+ 7u
12
+ ··· 3u + 1
c
6
u
14
+ 3u
13
+ ··· + 7u
2
+ 1
c
7
u
14
+ 3u
13
+ ··· + 6u + 1
c
8
u
14
+ 3u
12
+ ··· + u + 1
c
9
u
14
6u
13
+ ··· 3u + 1
c
10
u
14
+ 7u
12
+ ··· + 3u + 1
c
11
u
14
+ 2u
12
+ ··· 5u + 1
c
12
u
14
3u
13
+ ··· + 7u
2
+ 1
14
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
14
22y
13
+ ··· + 143y + 1
c
2
, c
4
y
14
14y
13
+ ··· 5y + 1
c
3
, c
8
y
14
+ 6y
13
+ ··· + 11y + 1
c
5
, c
10
y
14
+ 14y
13
+ ··· + 9y + 1
c
6
, c
12
y
14
+ 9y
13
+ ··· + 14y + 1
c
7
y
14
5y
13
+ ··· 10y + 1
c
9
y
14
10y
13
+ ··· 5y + 1
c
11
y
14
+ 4y
13
+ ··· + 5y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.139126 + 0.855284I
a = 1.030550 + 0.347283I
b = 1.68681 1.22802I
3.95141 + 0.77135I 5.32487 5.66602I
u = 0.139126 0.855284I
a = 1.030550 0.347283I
b = 1.68681 + 1.22802I
3.95141 0.77135I 5.32487 + 5.66602I
u = 0.352449 + 1.175430I
a = 0.43811 1.41737I
b = 0.881889 0.749482I
4.21220 + 5.05550I 8.55629 11.07069I
u = 0.352449 1.175430I
a = 0.43811 + 1.41737I
b = 0.881889 + 0.749482I
4.21220 5.05550I 8.55629 + 11.07069I
u = 1.229090 + 0.054546I
a = 0.450056 0.118081I
b = 0.225534 0.492981I
3.33140 3.93339I 7.31083 + 8.00848I
u = 1.229090 0.054546I
a = 0.450056 + 0.118081I
b = 0.225534 + 0.492981I
3.33140 + 3.93339I 7.31083 8.00848I
u = 0.196848 + 0.556043I
a = 0.21309 1.99356I
b = 1.41006 1.09670I
1.09831 3.21998I 6.98104 + 7.97611I
u = 0.196848 0.556043I
a = 0.21309 + 1.99356I
b = 1.41006 + 1.09670I
1.09831 + 3.21998I 6.98104 7.97611I
u = 1.40215 + 0.37579I
a = 0.293006 0.250018I
b = 0.483905 + 0.141934I
2.59518 + 1.77882I 1.86373 + 1.12551I
u = 1.40215 0.37579I
a = 0.293006 + 0.250018I
b = 0.483905 0.141934I
2.59518 1.77882I 1.86373 1.12551I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.229849 + 0.360057I
a = 0.68987 + 2.37094I
b = 2.71327 + 2.86427I
0.20979 + 2.65520I 8.5897 20.4516I
u = 0.229849 0.360057I
a = 0.68987 2.37094I
b = 2.71327 2.86427I
0.20979 2.65520I 8.5897 + 20.4516I
u = 0.41939 + 2.04733I
a = 0.602488 + 0.353629I
b = 1.61354 0.34924I
13.45590 4.02567I 2.43011 2.33585I
u = 0.41939 2.04733I
a = 0.602488 0.353629I
b = 1.61354 + 0.34924I
13.45590 + 4.02567I 2.43011 + 2.33585I
18
III. I
v
1
= ha, 5.79 × 10
5
v
8
+ 1.10 × 10
6
v
7
+ · · · + 5.35 × 10
6
b + 7.95 ×
10
6
, v
9
v
8
+ · · · + 3v 7i
(i) Arc colorings
a
3
=
1
0
a
8
=
v
0
a
4
=
1
0
a
9
=
v
0
a
11
=
0
0.108171v
8
0.205852v
7
+ ··· + 0.000774472v 1.48551
a
12
=
0.102023v
8
0.224509v
7
+ ··· + 1.05024v 0.683770
0.108171v
8
0.205852v
7
+ ··· + 0.000774472v 1.48551
a
7
=
v
0.109964v
8
0.217820v
7
+ ··· + 1.73167v 1.00939
a
10
=
0.159020v
8
+ 0.294157v
7
+ ··· 0.0933167v + 0.754991
0.0798487v
8
+ 0.139548v
7
+ ··· 0.391226v 0.126428
a
6
=
0.0944713v
8
+ 0.166302v
7
+ ··· + 0.644723v + 0.337094
0.0798487v
8
0.139548v
7
+ ··· + 0.391226v + 0.126428
a
1
=
0.163153v
8
0.314762v
7
+ ··· + 0.866612v 1.49020
1
a
5
=
0.163153v
8
+ 0.314762v
7
+ ··· 0.866612v + 1.49020
1
a
2
=
0.163153v
8
0.314762v
7
+ ··· + 0.866612v 0.490203
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
37039389
37473289
v
8
67980124
37473289
v
7
235056117
37473289
v
6
+
227362865
37473289
v
5
+
992262694
37473289
v
4
+
36681292
37473289
v
3
60669880
5353327
v
2
+
304560980
37473289
v
187191229
37473289
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
8
u
9
c
4
(u + 1)
9
c
5
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
6
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
c
7
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
9
u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1
c
10
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
11
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
12
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
8
y
9
c
5
, c
10
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
6
, c
12
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
7
, c
11
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
9
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.094310 + 0.114265I
a = 0
b = 0.650520 0.534295I
3.42837 + 2.09337I 6.50768 4.08340I
v = 1.094310 0.114265I
a = 0
b = 0.650520 + 0.534295I
3.42837 2.09337I 6.50768 + 4.08340I
v = 0.703774
a = 0
b = 1.17358
0.446489 2.13810
v = 0.187998 + 0.564097I
a = 0
b = 1.104930 0.619057I
1.02799 + 2.45442I 0.87375 1.42824I
v = 0.187998 0.564097I
a = 0
b = 1.104930 + 0.619057I
1.02799 2.45442I 0.87375 + 1.42824I
v = 1.51733 + 0.93950I
a = 0
b = 0.443756 + 0.532821I
2.72642 + 1.33617I 1.72452 + 1.86826I
v = 1.51733 0.93950I
a = 0
b = 0.443756 0.532821I
2.72642 1.33617I 1.72452 1.86826I
v = 2.57175 + 0.82630I
a = 0
b = 0.469909 + 0.043588I
1.95319 + 7.08493I 4.46574 10.08360I
v = 2.57175 0.82630I
a = 0
b = 0.469909 0.043588I
1.95319 7.08493I 4.46574 + 10.08360I
22
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
14
14u
13
+ ··· 5u + 1)
· (u
67
+ 78u
66
+ ··· + 171200u + 2401)
c
2
((u 1)
9
)(u
14
+ 6u
13
+ ··· 3u + 1)(u
67
16u
66
+ ··· + 120u 49)
c
3
u
9
(u
14
+ 3u
12
+ ··· u + 1)(u
67
+ u
66
+ ··· + 43008u 25088)
c
4
((u + 1)
9
)(u
14
6u
13
+ ··· + 3u + 1)(u
67
16u
66
+ ··· + 120u 49)
c
5
(u
9
u
8
+ ··· + u + 1)(u
14
+ 7u
12
+ ··· 3u + 1)
· (u
67
2u
66
+ ··· + 3200u 773)
c
6
(u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
· (u
14
+ 3u
13
+ ··· + 7u
2
+ 1)(u
67
3u
66
+ ··· + 781u 209)
c
7
(u
9
u
8
+ ··· u + 1)(u
14
+ 3u
13
+ ··· + 6u + 1)
· (u
67
+ u
66
+ ··· + 566773u 256243)
c
8
u
9
(u
14
+ 3u
12
+ ··· + u + 1)(u
67
+ u
66
+ ··· + 43008u 25088)
c
9
(u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1)
· (u
14
6u
13
+ ··· 3u + 1)(u
67
+ 4u
66
+ ··· 2u 1)
c
10
(u
9
+ u
8
+ ··· + u 1)(u
14
+ 7u
12
+ ··· + 3u + 1)
· (u
67
2u
66
+ ··· + 3200u 773)
c
11
(u
9
+ u
8
+ ··· u 1)(u
14
+ 2u
12
+ ··· 5u + 1)
· (u
67
+ 12u
66
+ ··· 77902u 10969)
c
12
(u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
14
3u
13
+ ··· + 7u
2
+ 1)(u
67
3u
66
+ ··· + 781u 209)
23
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
14
22y
13
+ ··· + 143y + 1)
· (y
67
162y
66
+ ··· + 5062883876y 5764801)
c
2
, c
4
((y 1)
9
)(y
14
14y
13
+ ··· 5y + 1)
· (y
67
78y
66
+ ··· + 171200y 2401)
c
3
, c
8
y
9
(y
14
+ 6y
13
+ ··· + 11y + 1)
· (y
67
+ 63y
66
+ ··· 2491940864y 629407744)
c
5
, c
10
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
14
+ 14y
13
+ ··· + 9y + 1)
· (y
67
+ 62y
66
+ ··· 18480042y 597529)
c
6
, c
12
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
14
+ 9y
13
+ ··· + 14y + 1)(y
67
+ 33y
66
+ ··· 240251y 43681)
c
7
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
14
5y
13
+ ··· 10y + 1)
· (y
67
+ 43y
66
+ ··· + 161121782381y 65660475049)
c
9
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
14
10y
13
+ ··· 5y + 1)(y
67
10y
66
+ ··· 44y 1)
c
11
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
14
+ 4y
13
+ ··· + 5y + 1)
· (y
67
+ 16y
66
+ ··· 1081596550y 120318961)
24