12n
0264
(K12n
0264
)
A knot diagram
1
Linearized knot diagam
3 5 9 2 10 12 11 4 7 5 9 6
Solving Sequence
3,9
4
8,12
11 7 10 6 1 5 2
c
3
c
8
c
11
c
7
c
9
c
6
c
12
c
5
c
2
c
1
, c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h3.93403 × 10
149
u
37
1.74178 × 10
149
u
36
+ ··· + 2.21546 × 10
152
b + 1.76661 × 10
154
,
7.93734 × 10
149
u
37
3.29411 × 10
149
u
36
+ ··· + 4.43092 × 10
152
a + 3.55362 × 10
154
,
u
38
u
37
+ ··· + 86016u 25088i
I
u
2
= h8082115793u
16
+ 864266486u
15
+ ··· + 5782655035b 29654101499,
682951511u
16
479427583u
15
+ ··· + 5782655035a 12663191293, u
17
+ 6u
15
+ ··· 3u + 1i
I
v
1
= ha, 579074v
8
+ 1101995v
7
+ ··· + 5353327b + 7952402,
v
9
v
8
8v
7
+ v
6
+ 33v
5
+ 23v
4
14v
3
2v
2
+ 3v 7i
* 3 irreducible components of dim
C
= 0, with total 64 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h3.93 × 10
149
u
37
1.74 × 10
149
u
36
+ · · · + 2.22 × 10
152
b + 1.77 ×
10
154
, 7.94 × 10
149
u
37
3.29 × 10
149
u
36
+ · · · + 4.43 × 10
152
a + 3.55 ×
10
154
, u
38
u
37
+ · · · + 86016u 25088i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
8
=
u
u
3
+ u
a
12
=
0.00179135u
37
+ 0.000743437u
36
+ ··· + 147.911u 80.2006
0.00177572u
37
+ 0.000786192u
36
+ ··· + 151.635u 79.7401
a
11
=
0.00179135u
37
+ 0.000743437u
36
+ ··· + 147.911u 80.2006
0.00247624u
37
+ 0.00101022u
36
+ ··· + 196.831u 106.030
a
7
=
0.00108938u
37
+ 0.000479390u
36
+ ··· + 86.4568u 38.9386
0.00129295u
37
+ 0.000455453u
36
+ ··· + 89.7492u 44.1198
a
10
=
0.00134130u
37
+ 0.000498496u
36
+ ··· + 100.346u 57.3777
0.00207949u
37
+ 0.000840213u
36
+ ··· + 166.563u 92.5692
a
6
=
0.00126938u
37
+ 0.000412248u
36
+ ··· + 85.1965u 49.2329
0.00261068u
37
+ 0.000910744u
36
+ ··· + 185.542u 106.611
a
1
=
0.000219442u
37
+ 0.000183073u
36
+ ··· + 30.0161u 10.6041
0.000132258u
37
+ 0.000107784u
36
+ ··· + 18.7525u 7.96288
a
5
=
0.0000871841u
37
0.0000752884u
36
+ ··· 11.2636u + 2.64124
0.000143931u
37
+ 0.000121946u
36
+ ··· + 19.9165u 7.66444
a
2
=
0.0000871841u
37
+ 0.0000752884u
36
+ ··· + 11.2636u 2.64124
0.000132258u
37
+ 0.000107784u
36
+ ··· + 18.7525u 7.96288
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.00823228u
37
0.00319378u
36
+ ··· 645.161u + 373.502
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
38
+ 46u
36
+ ··· + 6958u + 2401
c
2
, c
4
u
38
16u
37
+ ··· + 378u 49
c
3
, c
8
u
38
u
37
+ ··· + 86016u 25088
c
5
, c
10
u
38
2u
37
+ ··· 3904u 5873
c
6
, c
12
u
38
3u
37
+ ··· 446u + 44
c
7
u
38
+ u
37
+ ··· + 40881797u + 3617129
c
9
u
38
+ 4u
37
+ ··· 114u 17
c
11
u
38
+ u
37
+ ··· + 79046u 14009
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
38
+ 92y
37
+ ··· + 262856678y + 5764801
c
2
, c
4
y
38
+ 46y
36
+ ··· 6958y + 2401
c
3
, c
8
y
38
+ 69y
37
+ ··· + 3750756352y + 629407744
c
5
, c
10
y
38
12y
37
+ ··· 781291844y + 34492129
c
6
, c
12
y
38
+ 35y
37
+ ··· 111884y + 1936
c
7
y
38
107y
37
+ ··· 346184004395873y + 13083622202641
c
9
y
38
6y
37
+ ··· 8270y + 289
c
11
y
38
69y
37
+ ··· 9544952050y + 196252081
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.542649 + 0.614305I
a = 0.515994 + 1.233570I
b = 0.104502 + 0.163985I
1.68943 + 7.69679I 0.16453 13.04445I
u = 0.542649 0.614305I
a = 0.515994 1.233570I
b = 0.104502 0.163985I
1.68943 7.69679I 0.16453 + 13.04445I
u = 0.072090 + 0.744709I
a = 0.81163 1.20274I
b = 0.230747 + 0.056669I
3.31755 + 0.54950I 6.15791 + 2.31967I
u = 0.072090 0.744709I
a = 0.81163 + 1.20274I
b = 0.230747 0.056669I
3.31755 0.54950I 6.15791 2.31967I
u = 0.554003 + 0.499646I
a = 0.259417 + 1.163440I
b = 0.126830 + 0.775649I
1.38624 + 1.33481I 2.97345 3.66862I
u = 0.554003 0.499646I
a = 0.259417 1.163440I
b = 0.126830 0.775649I
1.38624 1.33481I 2.97345 + 3.66862I
u = 0.434969 + 0.601443I
a = 1.185780 0.546611I
b = 0.144861 + 0.163719I
1.48961 + 0.57943I 5.02569 0.39325I
u = 0.434969 0.601443I
a = 1.185780 + 0.546611I
b = 0.144861 0.163719I
1.48961 0.57943I 5.02569 + 0.39325I
u = 0.606671 + 0.412287I
a = 1.202140 + 0.417819I
b = 1.72769 0.34007I
4.47346 + 0.84284I 11.66035 0.97344I
u = 0.606671 0.412287I
a = 1.202140 0.417819I
b = 1.72769 + 0.34007I
4.47346 0.84284I 11.66035 + 0.97344I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.185752 + 1.318190I
a = 0.519872 + 0.356267I
b = 0.524833 + 0.069232I
2.12322 4.24125I 4.26882 + 3.51292I
u = 0.185752 1.318190I
a = 0.519872 0.356267I
b = 0.524833 0.069232I
2.12322 + 4.24125I 4.26882 3.51292I
u = 0.626028 + 0.000453I
a = 0.99835 + 1.48871I
b = 1.84598 + 1.42085I
0.61462 + 3.26287I 1.84851 7.14359I
u = 0.626028 0.000453I
a = 0.99835 1.48871I
b = 1.84598 1.42085I
0.61462 3.26287I 1.84851 + 7.14359I
u = 0.220678 + 0.522522I
a = 0.299614 0.840555I
b = 2.25916 0.15809I
0.41969 2.46857I 5.02234 + 6.21524I
u = 0.220678 0.522522I
a = 0.299614 + 0.840555I
b = 2.25916 + 0.15809I
0.41969 + 2.46857I 5.02234 6.21524I
u = 0.134435 + 0.540176I
a = 1.65614 + 0.96243I
b = 0.467042 + 0.770777I
0.34862 + 2.64648I 0.38453 4.62015I
u = 0.134435 0.540176I
a = 1.65614 0.96243I
b = 0.467042 0.770777I
0.34862 2.64648I 0.38453 + 4.62015I
u = 0.487313
a = 0.299932
b = 0.879403
1.21395 9.56810
u = 1.68632 + 0.08026I
a = 0.014317 + 0.422528I
b = 0.16420 + 1.88746I
1.94242 + 0.25898I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.68632 0.08026I
a = 0.014317 0.422528I
b = 0.16420 1.88746I
1.94242 0.25898I 0
u = 1.86202
a = 0.669370
b = 1.04021
6.81012 0
u = 0.78573 + 1.74324I
a = 1.105090 0.592834I
b = 0.214357 0.763758I
6.33444 4.25779I 0
u = 0.78573 1.74324I
a = 1.105090 + 0.592834I
b = 0.214357 + 0.763758I
6.33444 + 4.25779I 0
u = 0.36940 + 1.96319I
a = 0.015181 1.352630I
b = 0.05084 2.20969I
10.56750 4.02468I 0
u = 0.36940 1.96319I
a = 0.015181 + 1.352630I
b = 0.05084 + 2.20969I
10.56750 + 4.02468I 0
u = 1.13922 + 2.02195I
a = 0.145900 + 0.974160I
b = 0.03782 + 2.28437I
17.0081 15.1515I 0
u = 1.13922 2.02195I
a = 0.145900 0.974160I
b = 0.03782 2.28437I
17.0081 + 15.1515I 0
u = 1.07898 + 2.08221I
a = 0.003796 0.816704I
b = 0.37487 1.96325I
16.6139 + 6.3485I 0
u = 1.07898 2.08221I
a = 0.003796 + 0.816704I
b = 0.37487 + 1.96325I
16.6139 6.3485I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.95530 + 1.96183I
a = 0.665322 + 0.086310I
b = 0.704808 + 0.014037I
8.32107 2.64989I 0
u = 1.95530 1.96183I
a = 0.665322 0.086310I
b = 0.704808 0.014037I
8.32107 + 2.64989I 0
u = 0.18789 + 2.88116I
a = 0.176028 0.917819I
b = 0.20196 2.09465I
18.1843 + 3.4592I 0
u = 0.18789 2.88116I
a = 0.176028 + 0.917819I
b = 0.20196 + 2.09465I
18.1843 3.4592I 0
u = 0.89301 + 2.76858I
a = 0.023279 + 0.734216I
b = 0.04287 + 2.25868I
12.09730 + 5.36685I 0
u = 0.89301 2.76858I
a = 0.023279 0.734216I
b = 0.04287 2.25868I
12.09730 5.36685I 0
u = 0.20333 + 3.10034I
a = 0.041511 + 0.844710I
b = 0.13176 + 2.19457I
19.1617 + 5.3151I 0
u = 0.20333 3.10034I
a = 0.041511 0.844710I
b = 0.13176 2.19457I
19.1617 5.3151I 0
8
II.
I
u
2
= h8.08 × 10
9
u
16
+ 8.64 × 10
8
u
15
+ · · · + 5.78 × 10
9
b 2.97 × 10
10
, 6.83 ×
10
8
u
16
4.79×10
8
u
15
+· · ·+5.78×10
9
a1.27×10
10
, u
17
+6u
15
+· · ·3u+1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
8
=
u
u
3
+ u
a
12
=
0.118103u
16
+ 0.0829079u
15
+ ··· 0.587774u + 2.18986
1.39765u
16
0.149458u
15
+ ··· 5.69145u + 5.12811
a
11
=
0.118103u
16
+ 0.0829079u
15
+ ··· 0.587774u + 2.18986
1.29814u
16
0.108155u
15
+ ··· 5.32462u + 5.04520
a
7
=
0.446141u
16
+ 0.123421u
15
+ ··· 0.579812u + 2.45214
1.49333u
16
0.286083u
15
+ ··· 6.76385u + 4.74588
a
10
=
0.165246u
16
+ 0.188150u
15
+ ··· + 0.228629u + 2.06644
0.948386u
16
+ 0.0348973u
15
+ ··· 3.47584u + 4.81654
a
6
=
0.833403u
16
+ 0.355787u
15
+ ··· + 4.52387u 0.486115
0.998649u
16
+ 0.543937u
15
+ ··· + 4.75250u + 1.58032
a
1
=
0.0889186u
16
0.141079u
15
+ ··· + 0.611062u 0.716020
0.114263u
16
0.0409080u
15
+ ··· + 0.312606u 1.08969
a
5
=
0.0253442u
16
0.100171u
15
+ ··· + 0.298457u + 0.373667
0.118103u
16
+ 0.0829079u
15
+ ··· 0.587774u + 1.18986
a
2
=
0.0253442u
16
0.100171u
15
+ ··· + 0.298457u + 0.373667
0.114263u
16
0.0409080u
15
+ ··· + 0.312606u 1.08969
(ii) Obstruction class = 1
(iii) Cusp Shapes =
45091796106
5782655035
u
16
+
12435236787
5782655035
u
15
+ ··· +
43331514147
1156531007
u
96632179643
5782655035
9
(iv) u-Polynomials at the component
10
Crossings u-Polynomials at each crossing
c
1
u
17
8u
16
+ ··· + 3u 1
c
2
u
17
+ 6u
16
+ ··· + u + 1
c
3
u
17
+ 6u
15
+ ··· 3u + 1
c
4
u
17
6u
16
+ ··· + u 1
c
5
u
17
+ 6u
15
+ ··· + 3u 1
c
6
u
17
+ 3u
16
+ ··· + 6u
2
+ 1
c
7
u
17
+ 3u
16
+ ··· + 6u + 1
c
8
u
17
+ 6u
15
+ ··· 3u 1
c
9
u
17
6u
16
+ ··· + 3u 1
c
10
u
17
+ 6u
15
+ ··· + 3u + 1
c
11
u
17
5u
16
+ ··· + 5u 1
c
12
u
17
3u
16
+ ··· 6u
2
1
11
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
+ 8y
16
+ ··· 25y 1
c
2
, c
4
y
17
8y
16
+ ··· + 3y 1
c
3
, c
8
y
17
+ 12y
16
+ ··· + 3y 1
c
5
, c
10
y
17
+ 12y
16
+ ··· 3y 1
c
6
, c
12
y
17
+ 3y
16
+ ··· 12y 1
c
7
y
17
19y
16
+ ··· 2y 1
c
9
y
17
+ 2y
16
+ ··· + 19y 1
c
11
y
17
17y
16
+ ··· + 7y 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.123817 + 0.916477I
a = 0.468487 0.527233I
b = 0.848975 + 0.187757I
2.61790 + 2.40485I 3.33881 2.22795I
u = 0.123817 0.916477I
a = 0.468487 + 0.527233I
b = 0.848975 0.187757I
2.61790 2.40485I 3.33881 + 2.22795I
u = 0.519605 + 0.973810I
a = 0.045901 0.497479I
b = 0.642933 0.280867I
1.04490 6.61108I 1.52634 + 5.44334I
u = 0.519605 0.973810I
a = 0.045901 + 0.497479I
b = 0.642933 + 0.280867I
1.04490 + 6.61108I 1.52634 5.44334I
u = 0.718697 + 0.273065I
a = 1.301770 + 0.430364I
b = 0.061570 + 1.362440I
1.14952 + 2.21103I 2.23770 3.38646I
u = 0.718697 0.273065I
a = 1.301770 0.430364I
b = 0.061570 1.362440I
1.14952 2.21103I 2.23770 + 3.38646I
u = 0.535223 + 1.162140I
a = 0.064866 + 0.614609I
b = 0.405304 + 0.608509I
1.12324 + 5.07181I 0.31929 6.91281I
u = 0.535223 1.162140I
a = 0.064866 0.614609I
b = 0.405304 0.608509I
1.12324 5.07181I 0.31929 + 6.91281I
u = 0.259361 + 1.266310I
a = 0.449036 + 0.835046I
b = 0.176709 + 1.029420I
0.516364 + 0.300871I 0.207427 0.470649I
u = 0.259361 1.266310I
a = 0.449036 0.835046I
b = 0.176709 1.029420I
0.516364 0.300871I 0.207427 + 0.470649I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.642620 + 0.176331I
a = 1.82999 + 0.22284I
b = 2.02895 0.99762I
3.99885 0.50220I 2.39894 6.28246I
u = 0.642620 0.176331I
a = 1.82999 0.22284I
b = 2.02895 + 0.99762I
3.99885 + 0.50220I 2.39894 + 6.28246I
u = 0.314004 + 0.270023I
a = 1.99812 0.08558I
b = 3.08746 2.37905I
0.26934 + 3.00568I 3.5088 + 14.7647I
u = 0.314004 0.270023I
a = 1.99812 + 0.08558I
b = 3.08746 + 2.37905I
0.26934 3.00568I 3.5088 14.7647I
u = 1.73212
a = 0.671734
b = 0.989401
6.94010 36.0810
u = 0.35606 + 2.09120I
a = 0.100766 1.164660I
b = 0.01582 2.10159I
10.11250 4.21829I 4.98986 + 4.99941I
u = 0.35606 2.09120I
a = 0.100766 + 1.164660I
b = 0.01582 + 2.10159I
10.11250 + 4.21829I 4.98986 4.99941I
15
III. I
v
1
= ha, 5.79 × 10
5
v
8
+ 1.10 × 10
6
v
7
+ · · · + 5.35 × 10
6
b + 7.95 ×
10
6
, v
9
v
8
+ · · · + 3v 7i
(i) Arc colorings
a
3
=
1
0
a
9
=
v
0
a
4
=
1
0
a
8
=
v
0
a
12
=
0
0.108171v
8
0.205852v
7
+ ··· + 0.000774472v 1.48551
a
11
=
0.102023v
8
+ 0.224509v
7
+ ··· 1.05024v + 0.683770
0.108171v
8
0.205852v
7
+ ··· + 0.000774472v 1.48551
a
7
=
0.159020v
8
+ 0.294157v
7
+ ··· 0.0933167v + 0.754991
0.109964v
8
0.217820v
7
+ ··· + 1.73167v 1.00939
a
10
=
0.0944713v
8
+ 0.166302v
7
+ ··· + 0.644723v + 0.337094
0.0798487v
8
+ 0.139548v
7
+ ··· 0.391226v 0.126428
a
6
=
0.159020v
8
+ 0.294157v
7
+ ··· 0.0933167v + 0.754991
0.0798487v
8
0.139548v
7
+ ··· + 0.391226v + 0.126428
a
1
=
0.163153v
8
0.314762v
7
+ ··· + 0.866612v 1.49020
1
a
5
=
0.163153v
8
+ 0.314762v
7
+ ··· 0.866612v + 1.49020
1
a
2
=
0.163153v
8
0.314762v
7
+ ··· + 0.866612v 0.490203
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
41627955
37473289
v
8
61862036
37473289
v
7
282471299
37473289
v
6
+
146298199
37473289
v
5
+
1154392026
37473289
v
4
+
495537892
37473289
v
3
23961352
5353327
v
2
+
145490692
37473289
v
344731995
37473289
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
8
u
9
c
4
(u + 1)
9
c
5
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
6
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
c
7
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
9
u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1
c
10
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
11
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
12
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
8
y
9
c
5
, c
10
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
6
, c
12
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
7
, c
11
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
9
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.094310 + 0.114265I
a = 0
b = 0.650520 0.534295I
3.42837 + 2.09337I 6.52230 4.24226I
v = 1.094310 0.114265I
a = 0
b = 0.650520 + 0.534295I
3.42837 2.09337I 6.52230 + 4.24226I
v = 0.703774
a = 0
b = 1.17358
0.446489 3.16660
v = 0.187998 + 0.564097I
a = 0
b = 1.104930 0.619057I
1.02799 + 2.45442I 8.21790 4.39771I
v = 0.187998 0.564097I
a = 0
b = 1.104930 + 0.619057I
1.02799 2.45442I 8.21790 + 4.39771I
v = 1.51733 + 0.93950I
a = 0
b = 0.443756 + 0.532821I
2.72642 + 1.33617I 0.84367 3.27176I
v = 1.51733 0.93950I
a = 0
b = 0.443756 0.532821I
2.72642 1.33617I 0.84367 + 3.27176I
v = 2.57175 + 0.82630I
a = 0
b = 0.469909 + 0.043588I
1.95319 + 7.08493I 3.61934 1.74309I
v = 2.57175 0.82630I
a = 0
b = 0.469909 0.043588I
1.95319 7.08493I 3.61934 + 1.74309I
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
17
8u
16
+ ··· + 3u 1)(u
38
+ 46u
36
+ ··· + 6958u + 2401)
c
2
((u 1)
9
)(u
17
+ 6u
16
+ ··· + u + 1)(u
38
16u
37
+ ··· + 378u 49)
c
3
u
9
(u
17
+ 6u
15
+ ··· 3u + 1)(u
38
u
37
+ ··· + 86016u 25088)
c
4
((u + 1)
9
)(u
17
6u
16
+ ··· + u 1)(u
38
16u
37
+ ··· + 378u 49)
c
5
(u
9
u
8
+ ··· + u + 1)(u
17
+ 6u
15
+ ··· + 3u 1)
· (u
38
2u
37
+ ··· 3904u 5873)
c
6
(u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
· (u
17
+ 3u
16
+ ··· + 6u
2
+ 1)(u
38
3u
37
+ ··· 446u + 44)
c
7
(u
9
u
8
+ ··· u + 1)(u
17
+ 3u
16
+ ··· + 6u + 1)
· (u
38
+ u
37
+ ··· + 40881797u + 3617129)
c
8
u
9
(u
17
+ 6u
15
+ ··· 3u 1)(u
38
u
37
+ ··· + 86016u 25088)
c
9
(u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1)
· (u
17
6u
16
+ ··· + 3u 1)(u
38
+ 4u
37
+ ··· 114u 17)
c
10
(u
9
+ u
8
+ ··· + u 1)(u
17
+ 6u
15
+ ··· + 3u + 1)
· (u
38
2u
37
+ ··· 3904u 5873)
c
11
(u
9
+ u
8
+ ··· u 1)(u
17
5u
16
+ ··· + 5u 1)
· (u
38
+ u
37
+ ··· + 79046u 14009)
c
12
(u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
17
3u
16
+ ··· 6u
2
1)(u
38
3u
37
+ ··· 446u + 44)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
17
+ 8y
16
+ ··· 25y 1)
· (y
38
+ 92y
37
+ ··· + 262856678y + 5764801)
c
2
, c
4
((y 1)
9
)(y
17
8y
16
+ ··· + 3y 1)(y
38
+ 46y
36
+ ··· 6958y + 2401)
c
3
, c
8
y
9
(y
17
+ 12y
16
+ ··· + 3y 1)
· (y
38
+ 69y
37
+ ··· + 3750756352y + 629407744)
c
5
, c
10
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
17
+ 12y
16
+ ··· 3y 1)
· (y
38
12y
37
+ ··· 781291844y + 34492129)
c
6
, c
12
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
17
+ 3y
16
+ ··· 12y 1)(y
38
+ 35y
37
+ ··· 111884y + 1936)
c
7
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
17
19y
16
+ ··· 2y 1)
· (y
38
107y
37
+ ··· 346184004395873y + 13083622202641)
c
9
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
17
+ 2y
16
+ ··· + 19y 1)(y
38
6y
37
+ ··· 8270y + 289)
c
11
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
17
17y
16
+ ··· + 7y 1)
· (y
38
69y
37
+ ··· 9544952050y + 196252081)
21