12n
0267
(K12n
0267
)
A knot diagram
1
Linearized knot diagam
3 5 9 2 10 9 11 4 12 5 7 6
Solving Sequence
4,8
9
3,11
7 12 10 6 1 5 2
c
8
c
3
c
7
c
11
c
9
c
6
c
12
c
5
c
2
c
1
, c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h1.63228 × 10
53
u
27
+ 1.02544 × 10
54
u
26
+ ··· + 3.06469 × 10
56
b + 3.90256 × 10
56
,
1.81316 × 10
54
u
27
+ 1.29787 × 10
55
u
26
+ ··· + 2.45175 × 10
57
a 9.42098 × 10
56
,
u
28
+ 7u
27
+ ··· 256u 1024i
I
u
2
= h−15a
5
u
4
35a
4
u
4
+ ··· + 62a + 18, 12a
5
u
4
+ 166a
4
u
4
+ ··· + 144010a + 300665,
u
5
u
4
+ 5u
3
u
2
+ 2u + 2i
I
u
3
= h−2796800274u
16
+ 1230170348u
15
+ ··· + 5782655035b + 1488757467,
115474u
16
+ 4433863u
15
+ ··· + 2844395a 26311393, u
17
+ 6u
15
+ ··· 3u 1i
I
v
1
= ha, 8v
3
12v
2
+ b + 10v 3, 8v
4
12v
3
+ 12v
2
5v + 1i
I
v
2
= ha, b
6
b
5
+ 2b
4
2b
3
+ 2b
2
2b + 1, v + 1i
* 5 irreducible components of dim
C
= 0, with total 85 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h1.63×10
53
u
27
+1.03×10
54
u
26
+· · ·+3.06×10
56
b+3.90×10
56
, 1.81×10
54
u
27
+
1.30×10
55
u
26
+· · ·+2.45 ×10
57
a9.42 × 10
56
, u
28
+7u
27
+· · ·256u 1024i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
0.000739535u
27
0.00529364u
26
+ ··· + 1.32145u + 0.384255
0.000532608u
27
0.00334597u
26
+ ··· 0.222903u 1.27339
a
7
=
0.0000164451u
27
0.000139457u
26
+ ··· + 0.107664u + 0.565098
0.000174750u
27
0.00136950u
26
+ ··· 0.302799u 0.594774
a
12
=
0.000886322u
27
0.00613088u
26
+ ··· + 1.06551u 0.306723
0.000917462u
27
0.00664824u
26
+ ··· + 2.05507u 0.158393
a
10
=
0.000128059u
27
0.000962696u
26
+ ··· + 0.904215u + 1.23308
0.000823960u
27
+ 0.00616689u
26
+ ··· 1.24171u 0.0314143
a
6
=
0.000282712u
27
0.00211501u
26
+ ··· 0.172064u 0.00475082
0.000128885u
27
0.000876415u
26
+ ··· 0.604047u 0.709139
a
1
=
0.000661565u
27
0.00488332u
26
+ ··· + 2.13497u + 0.559124
0.000843467u
27
0.00643716u
26
+ ··· + 3.43637u + 0.641978
a
5
=
0.000363425u
27
+ 0.00276215u
26
+ ··· 2.04345u 0.341280
0.00102499u
27
+ 0.00764547u
26
+ ··· 4.17842u 0.900404
a
2
=
0.000405455u
27
0.00320663u
26
+ ··· + 2.56297u + 0.782535
0.000623273u
27
0.00509696u
26
+ ··· + 4.09691u + 0.746524
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.000805991u
27
+ 0.000903953u
26
+ ··· + 16.6786u + 9.73356
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
28
+ 11u
27
+ ··· + 38144u + 4096
c
2
, c
4
u
28
5u
27
+ ··· + 368u 64
c
3
, c
8
u
28
7u
27
+ ··· + 256u 1024
c
5
, c
7
, c
10
c
11
u
28
u
26
+ ··· + 6u + 1
c
6
, c
12
u
28
u
27
+ ··· + 5u + 1
c
9
u
28
11u
27
+ ··· 464u + 32
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
28
+ 17y
27
+ ··· 423952384y + 16777216
c
2
, c
4
y
28
11y
27
+ ··· 38144y + 4096
c
3
, c
8
y
28
+ 21y
27
+ ··· + 7012352y + 1048576
c
5
, c
7
, c
10
c
11
y
28
2y
27
+ ··· 16y + 1
c
6
, c
12
y
28
+ 15y
27
+ ··· + 59y + 1
c
9
y
28
9y
27
+ ··· 57088y + 1024
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.700519 + 0.599156I
a = 0.801515 1.064090I
b = 0.037633 0.642247I
3.55837 1.15126I 11.39772 0.05458I
u = 0.700519 0.599156I
a = 0.801515 + 1.064090I
b = 0.037633 + 0.642247I
3.55837 + 1.15126I 11.39772 + 0.05458I
u = 0.380572 + 0.813474I
a = 0.564232 + 0.751884I
b = 0.166171 + 0.662526I
0.05630 1.72703I 1.78795 + 1.55176I
u = 0.380572 0.813474I
a = 0.564232 0.751884I
b = 0.166171 0.662526I
0.05630 + 1.72703I 1.78795 1.55176I
u = 0.588263 + 1.018270I
a = 0.470372 0.902968I
b = 0.094878 0.756998I
2.26210 + 6.12921I 7.94602 + 0.52990I
u = 0.588263 1.018270I
a = 0.470372 + 0.902968I
b = 0.094878 + 0.756998I
2.26210 6.12921I 7.94602 0.52990I
u = 1.069010 + 0.807521I
a = 0.138524 0.648901I
b = 0.903329 0.048342I
0.304442 0.720791I 1.85900 + 1.85047I
u = 1.069010 0.807521I
a = 0.138524 + 0.648901I
b = 0.903329 + 0.048342I
0.304442 + 0.720791I 1.85900 1.85047I
u = 0.289195 + 0.590850I
a = 0.185649 0.370483I
b = 0.454678 1.109670I
4.11561 8.14651I 4.6236 + 14.7439I
u = 0.289195 0.590850I
a = 0.185649 + 0.370483I
b = 0.454678 + 1.109670I
4.11561 + 8.14651I 4.6236 14.7439I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.008090 + 0.619126I
a = 0.445860 + 0.546608I
b = 0.405809 + 0.656851I
0.33084 1.64029I 3.18047 + 4.70949I
u = 0.008090 0.619126I
a = 0.445860 0.546608I
b = 0.405809 0.656851I
0.33084 + 1.64029I 3.18047 4.70949I
u = 1.31770 + 0.54916I
a = 0.352145 0.329705I
b = 1.100510 0.409135I
3.36539 + 1.37186I 0.78063 1.56765I
u = 1.31770 0.54916I
a = 0.352145 + 0.329705I
b = 1.100510 + 0.409135I
3.36539 1.37186I 0.78063 + 1.56765I
u = 0.535945
a = 1.11271
b = 0.260909
1.18275 7.92670
u = 0.66539 + 1.38340I
a = 0.420370 + 0.447189I
b = 0.979556 0.414826I
0.93155 + 4.11677I 2.65942 4.73683I
u = 0.66539 1.38340I
a = 0.420370 0.447189I
b = 0.979556 + 0.414826I
0.93155 4.11677I 2.65942 + 4.73683I
u = 1.68431
a = 0.112961
b = 0.309973
10.2990 65.2260
u = 1.70473 + 0.38435I
a = 0.204716 + 0.352722I
b = 1.155650 + 0.736871I
2.18156 + 7.22574I 3.09669 6.28834I
u = 1.70473 0.38435I
a = 0.204716 0.352722I
b = 1.155650 0.736871I
2.18156 7.22574I 3.09669 + 6.28834I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.73389 + 1.71578I
a = 1.098300 + 0.366340I
b = 1.02566 + 1.08507I
9.85046 + 9.25719I 3.57812 5.07121I
u = 0.73389 1.71578I
a = 1.098300 0.366340I
b = 1.02566 1.08507I
9.85046 9.25719I 3.57812 + 5.07121I
u = 0.84442 + 1.78161I
a = 1.062890 0.293393I
b = 1.07966 1.38439I
8.3503 + 16.4009I 4.99450 7.83007I
u = 0.84442 1.78161I
a = 1.062890 + 0.293393I
b = 1.07966 + 1.38439I
8.3503 16.4009I 4.99450 + 7.83007I
u = 0.22185 + 2.03555I
a = 0.956969 0.026772I
b = 1.27197 0.92548I
11.43660 1.44441I 1.83528 + 0.I
u = 0.22185 2.03555I
a = 0.956969 + 0.026772I
b = 1.27197 + 0.92548I
11.43660 + 1.44441I 1.83528 + 0.I
u = 0.34578 + 2.17004I
a = 0.853942 + 0.002644I
b = 1.30777 + 1.19876I
10.24040 8.22431I 4.00000 + 4.11200I
u = 0.34578 2.17004I
a = 0.853942 0.002644I
b = 1.30777 1.19876I
10.24040 + 8.22431I 4.00000 4.11200I
7
II. I
u
2
= h−15a
5
u
4
35a
4
u
4
+ · · · + 62a + 18, 12a
5
u
4
+ 166a
4
u
4
+ · · · +
144010a + 300665, u
5
u
4
+ 5u
3
u
2
+ 2u + 2i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
a
0.535714a
5
u
4
+ 1.25000a
4
u
4
+ ··· 2.21429a 0.642857
a
7
=
0.607143a
5
u
4
+ 0.428571a
4
u
4
+ ··· + 0.642857a + 2.71429
4.67857a
5
u
4
3.57143a
4
u
4
+ ··· + 0.928571a + 3.14286
a
12
=
3.71429a
5
u
4
1.03571a
4
u
4
+ ··· 0.928571a 2.57143
16.5714a
5
u
4
+ 9.71429a
4
u
4
+ ··· 7.71429a 5.42857
a
10
=
1.21429a
5
u
4
0.607143a
4
u
4
+ ··· + 2.78571a + 1.42857
7.07143a
5
u
4
+ 3.64286a
4
u
4
+ ··· 3.42857a 2.71429
a
6
=
0.607143a
5
u
4
+ 0.428571a
4
u
4
+ ··· + 0.642857a + 1.71429
4.67857a
5
u
4
3.57143a
4
u
4
+ ··· + 0.928571a + 2.14286
a
1
=
1
4
u
4
1
4
u
2
+
3
2
u
1
2
u
4
+
1
2
u
3
1
2
u
2
a
5
=
1
2
u
2
+
1
2
u 1
1
4
u
4
1
4
u
2
u
1
2
a
2
=
1
4
u
4
+
1
2
u
3
+ ··· +
3
2
u
1
2
1
2
u
3
1
2
u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
17
7
a
4
u
4
+
5
7
u
4
a
3
+ ··· +
22
7
a
92
7
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
5
+ 6u
3
+ u
2
u + 1)
6
c
2
, c
4
(u
5
2u
4
+ 2u
3
+ u
2
u + 1)
6
c
3
, c
8
(u
5
+ u
4
+ 5u
3
+ u
2
+ 2u 2)
6
c
5
, c
7
, c
10
c
11
u
30
2u
29
+ ··· 20u + 137
c
6
, c
12
u
30
6u
29
+ ··· + 392u + 191
c
9
(u
3
+ u
2
1)
10
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
+ 12y
4
+ 34y
3
13y
2
y 1)
6
c
2
, c
4
(y
5
+ 6y
3
y
2
y 1)
6
c
3
, c
8
(y
5
+ 9y
4
+ 27y
3
+ 23y
2
+ 8y 4)
6
c
5
, c
7
, c
10
c
11
y
30
+ 6y
29
+ ··· + 131668y + 18769
c
6
, c
12
y
30
2y
29
+ ··· 47468y + 36481
c
9
(y
3
y
2
+ 2y 1)
10
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.375669 + 0.888717I
a = 0.674585 + 0.800660I
b = 0.250372 + 0.453019I
0.05929 1.71921I 2.12477 + 0.93832I
u = 0.375669 + 0.888717I
a = 0.150570 0.874514I
b = 0.372835 1.197460I
0.05929 + 3.93704I 2.12477 5.02057I
u = 0.375669 + 0.888717I
a = 0.865106 + 0.190043I
b = 0.079065 1.171220I
4.19688 + 1.10891I 8.65403 2.04112I
u = 0.375669 + 0.888717I
a = 0.500602 + 0.675276I
b = 0.122646 + 0.883622I
0.05929 1.71921I 2.12477 + 0.93832I
u = 0.375669 + 0.888717I
a = 0.790896 0.900150I
b = 1.154460 + 0.050802I
0.05929 + 3.93704I 2.12477 5.02057I
u = 0.375669 + 0.888717I
a = 0.156566 0.585774I
b = 0.62035 + 1.42290I
4.19688 + 1.10891I 8.65403 2.04112I
u = 0.375669 0.888717I
a = 0.674585 0.800660I
b = 0.250372 0.453019I
0.05929 + 1.71921I 2.12477 0.93832I
u = 0.375669 0.888717I
a = 0.150570 + 0.874514I
b = 0.372835 + 1.197460I
0.05929 3.93704I 2.12477 + 5.02057I
u = 0.375669 0.888717I
a = 0.865106 0.190043I
b = 0.079065 + 1.171220I
4.19688 1.10891I 8.65403 + 2.04112I
u = 0.375669 0.888717I
a = 0.500602 0.675276I
b = 0.122646 0.883622I
0.05929 + 1.71921I 2.12477 0.93832I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.375669 0.888717I
a = 0.790896 + 0.900150I
b = 1.154460 0.050802I
0.05929 3.93704I 2.12477 + 5.02057I
u = 0.375669 0.888717I
a = 0.156566 + 0.585774I
b = 0.62035 1.42290I
4.19688 1.10891I 8.65403 + 2.04112I
u = 0.504107
a = 2.97283 + 2.25685I
b = 0.436616 0.497956I
3.11432 + 2.82812I 13.43328 2.97945I
u = 0.504107
a = 2.97283 2.25685I
b = 0.436616 + 0.497956I
3.11432 2.82812I 13.43328 + 2.97945I
u = 0.504107
a = 2.46586 + 7.51356I
b = 0.07832 + 1.49767I
7.25191 19.9625 + 0.I
u = 0.504107
a = 2.46586 7.51356I
b = 0.07832 1.49767I
7.25191 19.9625 + 0.I
u = 0.504107
a = 1.11141 + 9.05588I
b = 0.377491 + 0.857286I
3.11432 + 2.82812I 13.43328 2.97945I
u = 0.504107
a = 1.11141 9.05588I
b = 0.377491 0.857286I
3.11432 2.82812I 13.43328 + 2.97945I
u = 0.37638 + 2.02979I
a = 0.941568 0.072890I
b = 0.99031 1.34752I
9.99924 6.95303I 3.38420 + 5.13388I
u = 0.37638 + 2.02979I
a = 0.895319 + 0.135542I
b = 1.30155 + 1.31060I
9.99924 1.29678I 3.38420 0.82502I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.37638 + 2.02979I
a = 0.798012 + 0.078062I
b = 1.64960 + 0.34874I
5.86166 4.12490I 9.91347 + 2.15443I
u = 0.37638 + 2.02979I
a = 0.768176 + 0.214026I
b = 1.60645 0.98436I
9.99924 6.95303I 3.38420 + 5.13388I
u = 0.37638 + 2.02979I
a = 0.750216 + 0.005392I
b = 0.616800 0.250072I
5.86166 4.12490I 9.91347 + 2.15443I
u = 0.37638 + 2.02979I
a = 0.685847 0.213681I
b = 1.13805 + 1.09576I
9.99924 1.29678I 3.38420 0.82502I
u = 0.37638 2.02979I
a = 0.941568 + 0.072890I
b = 0.99031 + 1.34752I
9.99924 + 6.95303I 3.38420 5.13388I
u = 0.37638 2.02979I
a = 0.895319 0.135542I
b = 1.30155 1.31060I
9.99924 + 1.29678I 3.38420 + 0.82502I
u = 0.37638 2.02979I
a = 0.798012 0.078062I
b = 1.64960 0.34874I
5.86166 + 4.12490I 9.91347 2.15443I
u = 0.37638 2.02979I
a = 0.768176 0.214026I
b = 1.60645 + 0.98436I
9.99924 + 6.95303I 3.38420 5.13388I
u = 0.37638 2.02979I
a = 0.750216 0.005392I
b = 0.616800 + 0.250072I
5.86166 + 4.12490I 9.91347 2.15443I
u = 0.37638 2.02979I
a = 0.685847 + 0.213681I
b = 1.13805 1.09576I
9.99924 + 1.29678I 3.38420 + 0.82502I
13
III.
I
u
3
= h−2.80 × 10
9
u
16
+ 1.23 × 10
9
u
15
+ · · · + 5.78 × 10
9
b + 1.49 × 10
9
, 1.15 ×
10
5
u
16
+4.43×10
6
u
15
+· · · +2.84×10
6
a2.63×10
7
, u
17
+6u
15
+· · · 3u 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
0.0405970u
16
1.55881u
15
+ ··· 7.16863u + 9.25026
0.483653u
16
0.212735u
15
+ ··· 1.67509u 0.257452
a
7
=
3.74840u
16
2.16144u
15
+ ··· 23.4255u 3.72929
0.0829079u
16
0.0995122u
15
+ ··· 1.83555u 0.881897
a
12
=
3.61930u
16
2.25286u
15
+ ··· 19.3756u + 0.277471
0.355787u
16
0.159534u
15
+ ··· 2.01409u 0.833403
a
10
=
0.164018u
16
1.84216u
15
+ ··· 8.28234u + 10.6964
0.483653u
16
0.212735u
15
+ ··· 1.67509u 0.257452
a
6
=
3.51603u
16
2.28526u
15
+ ··· 22.5251u 2.44974
0.290525u
16
0.147505u
15
+ ··· 2.43936u 1.00571
a
1
=
1.23077u
16
0.226208u
15
+ ··· 4.14992u 2.86754
0.0648607u
16
+ 0.00369480u
15
+ ··· + 0.102878u 0.137290
a
5
=
1.08969u
16
+ 0.114263u
15
+ ··· + 3.70066u + 2.95645
0.141079u
16
0.111945u
15
+ ··· 0.449264u + 0.0889186
a
2
=
1.18986u
16
0.118103u
15
+ ··· 3.40302u 2.98180
0.0172629u
16
+ 0.0956716u
15
+ ··· + 1.13318u 0.143448
(ii) Obstruction class = 1
(iii) Cusp Shapes =
44404088866
5782655035
u
16
1457732737
5782655035
u
15
+ ···
34652808542
1156531007
u
182738550788
5782655035
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
8u
16
+ ··· + 3u 1
c
2
u
17
+ 6u
16
+ ··· + u + 1
c
3
u
17
+ 6u
15
+ ··· 3u + 1
c
4
u
17
6u
16
+ ··· + u 1
c
5
, c
11
u
17
+ 6u
15
+ ··· + 3u 1
c
6
, c
12
u
17
3u
16
+ ··· + 6u 1
c
7
, c
10
u
17
+ 6u
15
+ ··· + 3u + 1
c
8
u
17
+ 6u
15
+ ··· 3u 1
c
9
u
17
5u
16
+ ··· + 5u 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
+ 8y
16
+ ··· 25y 1
c
2
, c
4
y
17
8y
16
+ ··· + 3y 1
c
3
, c
8
y
17
+ 12y
16
+ ··· + 3y 1
c
5
, c
7
, c
10
c
11
y
17
+ 12y
16
+ ··· 3y 1
c
6
, c
12
y
17
19y
16
+ ··· 2y 1
c
9
y
17
7y
16
+ ··· + 17y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.123817 + 0.916477I
a = 0.72791 + 1.22000I
b = 0.302924 + 0.816439I
0.67196 2.40485I 7.80780 + 6.32008I
u = 0.123817 0.916477I
a = 0.72791 1.22000I
b = 0.302924 0.816439I
0.67196 + 2.40485I 7.80780 6.32008I
u = 0.519605 + 0.973810I
a = 0.205092 1.101040I
b = 0.199212 0.760976I
2.24497 + 6.61108I 7.2534 15.3751I
u = 0.519605 0.973810I
a = 0.205092 + 1.101040I
b = 0.199212 + 0.760976I
2.24497 6.61108I 7.2534 + 15.3751I
u = 0.718697 + 0.273065I
a = 0.143920 1.236700I
b = 0.503625 + 0.659985I
2.14035 2.21103I 3.32753 + 2.55558I
u = 0.718697 0.273065I
a = 0.143920 + 1.236700I
b = 0.503625 0.659985I
2.14035 + 2.21103I 3.32753 2.55558I
u = 0.535223 + 1.162140I
a = 0.218207 0.016209I
b = 0.154895 1.305200I
4.41311 5.07181I 7.38870 + 4.45168I
u = 0.535223 1.162140I
a = 0.218207 + 0.016209I
b = 0.154895 + 1.305200I
4.41311 + 5.07181I 7.38870 4.45168I
u = 0.259361 + 1.266310I
a = 0.298735 0.200867I
b = 0.27641 + 1.42034I
2.77350 0.30087I 3.43063 0.64342I
u = 0.259361 1.266310I
a = 0.298735 + 0.200867I
b = 0.27641 1.42034I
2.77350 + 0.30087I 3.43063 + 0.64342I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.642620 + 0.176331I
a = 2.73234 3.06072I
b = 0.06025 1.48960I
7.28871 + 0.50220I 14.6902 9.4676I
u = 0.642620 0.176331I
a = 2.73234 + 3.06072I
b = 0.06025 + 1.48960I
7.28871 0.50220I 14.6902 + 9.4676I
u = 0.314004 + 0.270023I
a = 11.33940 1.30281I
b = 0.368087 0.696391I
3.55921 3.00568I 21.0214 13.1073I
u = 0.314004 0.270023I
a = 11.33940 + 1.30281I
b = 0.368087 + 0.696391I
3.55921 + 3.00568I 21.0214 + 13.1073I
u = 1.73212
a = 0.0334354
b = 0.404382
10.2300 50.8770
u = 0.35606 + 2.09120I
a = 0.747795 + 0.030202I
b = 1.210930 + 0.258234I
6.82265 + 4.21829I 0.48138 3.10222I
u = 0.35606 2.09120I
a = 0.747795 0.030202I
b = 1.210930 0.258234I
6.82265 4.21829I 0.48138 + 3.10222I
18
IV. I
v
1
= ha, 8v
3
12v
2
+ b + 10v 3, 8v
4
12v
3
+ 12v
2
5v + 1i
(i) Arc colorings
a
4
=
v
0
a
8
=
1
0
a
9
=
1
0
a
3
=
v
0
a
11
=
0
8v
3
+ 12v
2
10v + 3
a
7
=
1
8v
3
+ 8v
2
8v + 1
a
12
=
8v
3
+ 12v
2
10v + 3
8v
3
+ 8v
2
6v
a
10
=
8v
3
12v
2
+ 10v 3
16v
3
16v
2
+ 14v 2
a
6
=
8v
3
+ 8v
2
8v + 2
8v
3
+ 8v
2
8v + 1
a
1
=
1
8v
3
12v
2
+ 12v 5
a
5
=
1
8v
3
+ 12v
2
12v + 5
a
2
=
v 1
8v
3
12v
2
+ 12v 5
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8v
3
+ 5v
2
9
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
8
u
4
c
4
(u + 1)
4
c
5
, c
7
u
4
+ u
2
+ u + 1
c
6
u
4
2u
3
+ 3u
2
u + 1
c
9
u
4
+ 3u
3
+ 4u
2
+ 3u + 2
c
10
, c
11
u
4
+ u
2
u + 1
c
12
u
4
+ 2u
3
+ 3u
2
+ u + 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
8
y
4
c
5
, c
7
, c
10
c
11
y
4
+ 2y
3
+ 3y
2
+ y + 1
c
6
, c
12
y
4
+ 2y
3
+ 7y
2
+ 5y + 1
c
9
y
4
y
3
+ 2y
2
+ 7y + 4
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.447562 + 0.776246I
a = 0
b = 0.547424 + 0.585652I
0.66484 1.39709I 5.25608 + 3.48426I
v = 0.447562 0.776246I
a = 0
b = 0.547424 0.585652I
0.66484 + 1.39709I 5.25608 3.48426I
v = 0.302438 + 0.253422I
a = 0
b = 0.547424 1.120870I
4.26996 7.64338I 8.61892 + 0.34032I
v = 0.302438 0.253422I
a = 0
b = 0.547424 + 1.120870I
4.26996 + 7.64338I 8.61892 0.34032I
22
V. I
v
2
= ha, b
6
b
5
+ 2b
4
2b
3
+ 2b
2
2b + 1, v + 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
1
0
a
9
=
1
0
a
3
=
1
0
a
11
=
0
b
a
7
=
1
b
2
a
12
=
b
b
3
+ b
a
10
=
b
4
+ b
2
+ 1
b
5
+ 2b
3
b
2
+ 2b 1
a
6
=
b
2
+ 1
b
2
a
1
=
b
5
2b
3
b + 1
1
a
5
=
b
5
+ 2b
3
+ b 1
1
a
2
=
b
5
2b
3
b
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4b
3
+ 4b 8
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
8
u
6
c
4
(u + 1)
6
c
5
, c
7
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1
c
6
u
6
3u
5
+ 4u
4
2u
3
+ 1
c
9
(u
3
u
2
+ 1)
2
c
10
, c
11
u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1
c
12
u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
8
y
6
c
5
, c
7
, c
10
c
11
y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1
c
6
, c
12
y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1
c
9
(y
3
y
2
+ 2y 1)
2
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.498832 + 1.001300I
1.91067 2.82812I 4.49024 + 2.97945I
v = 1.00000
a = 0
b = 0.498832 1.001300I
1.91067 + 2.82812I 4.49024 2.97945I
v = 1.00000
a = 0
b = 0.284920 + 1.115140I
6.04826 11.01951 + 0.I
v = 1.00000
a = 0
b = 0.284920 1.115140I
6.04826 11.01951 + 0.I
v = 1.00000
a = 0
b = 0.713912 + 0.305839I
1.91067 2.82812I 4.49024 + 2.97945I
v = 1.00000
a = 0
b = 0.713912 0.305839I
1.91067 + 2.82812I 4.49024 2.97945I
26
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
10
)(u
5
+ 6u
3
+ u
2
u + 1)
6
(u
17
8u
16
+ ··· + 3u 1)
· (u
28
+ 11u
27
+ ··· + 38144u + 4096)
c
2
((u 1)
10
)(u
5
2u
4
+ ··· u + 1)
6
(u
17
+ 6u
16
+ ··· + u + 1)
· (u
28
5u
27
+ ··· + 368u 64)
c
3
u
10
(u
5
+ u
4
+ ··· + 2u 2)
6
(u
17
+ 6u
15
+ ··· 3u + 1)
· (u
28
7u
27
+ ··· + 256u 1024)
c
4
((u + 1)
10
)(u
5
2u
4
+ ··· u + 1)
6
(u
17
6u
16
+ ··· + u 1)
· (u
28
5u
27
+ ··· + 368u 64)
c
5
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
17
+ 6u
15
+ ··· + 3u 1)(u
28
u
26
+ ··· + 6u + 1)
· (u
30
2u
29
+ ··· 20u + 137)
c
6
(u
4
2u
3
+ 3u
2
u + 1)(u
6
3u
5
+ 4u
4
2u
3
+ 1)
· (u
17
3u
16
+ ··· + 6u 1)(u
28
u
27
+ ··· + 5u + 1)
· (u
30
6u
29
+ ··· + 392u + 191)
c
7
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
17
+ 6u
15
+ ··· + 3u + 1)(u
28
u
26
+ ··· + 6u + 1)
· (u
30
2u
29
+ ··· 20u + 137)
c
8
u
10
(u
5
+ u
4
+ ··· + 2u 2)
6
(u
17
+ 6u
15
+ ··· 3u 1)
· (u
28
7u
27
+ ··· + 256u 1024)
c
9
(u
3
u
2
+ 1)
2
(u
3
+ u
2
1)
10
(u
4
+ 3u
3
+ 4u
2
+ 3u + 2)
· (u
17
5u
16
+ ··· + 5u 1)(u
28
11u
27
+ ··· 464u + 32)
c
10
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
17
+ 6u
15
+ ··· + 3u + 1)(u
28
u
26
+ ··· + 6u + 1)
· (u
30
2u
29
+ ··· 20u + 137)
c
11
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
17
+ 6u
15
+ ··· + 3u 1)(u
28
u
26
+ ··· + 6u + 1)
· (u
30
2u
29
+ ··· 20u + 137)
c
12
(u
4
+ 2u
3
+ 3u
2
+ u + 1)(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
· (u
17
3u
16
+ ··· + 6u 1)(u
28
u
27
+ ··· + 5u + 1)
· (u
30
6u
29
+ ··· + 392u + 191)
27
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
10
(y
5
+ 12y
4
+ 34y
3
13y
2
y 1)
6
· (y
17
+ 8y
16
+ ··· 25y 1)
· (y
28
+ 17y
27
+ ··· 423952384y + 16777216)
c
2
, c
4
((y 1)
10
)(y
5
+ 6y
3
y
2
y 1)
6
(y
17
8y
16
+ ··· + 3y 1)
· (y
28
11y
27
+ ··· 38144y + 4096)
c
3
, c
8
y
10
(y
5
+ 9y
4
+ ··· + 8y 4)
6
(y
17
+ 12y
16
+ ··· + 3y 1)
· (y
28
+ 21y
27
+ ··· + 7012352y + 1048576)
c
5
, c
7
, c
10
c
11
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
17
+ 12y
16
+ ··· 3y 1)(y
28
2y
27
+ ··· 16y + 1)
· (y
30
+ 6y
29
+ ··· + 131668y + 18769)
c
6
, c
12
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)(y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
· (y
17
19y
16
+ ··· 2y 1)(y
28
+ 15y
27
+ ··· + 59y + 1)
· (y
30
2y
29
+ ··· 47468y + 36481)
c
9
((y
3
y
2
+ 2y 1)
12
)(y
4
y
3
+ 2y
2
+ 7y + 4)(y
17
7y
16
+ ··· + 17y 1)
· (y
28
9y
27
+ ··· 57088y + 1024)
28