12n
0269
(K12n
0269
)
A knot diagram
1
Linearized knot diagam
3 5 8 6 2 10 12 4 7 6 1 7
Solving Sequence
2,6
5 3 1
4,11
10 7 9 8 12
c
5
c
2
c
1
c
4
c
10
c
6
c
9
c
8
c
12
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h6075798104u
29
20035573492u
28
+ ··· + 94573295142b 102785752178,
52900187657u
29
66435815226u
28
+ ··· + 189146590284a 100941534777,
u
30
2u
29
+ ··· 11u + 4i
I
u
2
= h3u
18
a 3u
18
+ ··· a 1, 2u
18
3u
17
+ ··· 4a + 5, u
19
u
18
+ ··· + 2u + 1i
I
u
3
= h−u
3
+ au u
2
+ b + 1, 2u
3
a 4u
2
a + u
3
+ a
2
4au 2u
2
4u 5, u
4
+ u
3
+ u
2
+ 1i
I
u
4
= hb 1, 2a + 2u + 1, u
2
u + 1i
* 4 irreducible components of dim
C
= 0, with total 78 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h6.08×10
9
u
29
2.00×10
10
u
28
+· · ·+9.46×10
10
b1.03×10
11
, 5.29×10
10
u
29
6.64 × 10
10
u
28
+ · · · + 1.89 × 10
11
a 1.01 × 10
11
, u
30
2u
29
+ · · · 11u + 4i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
4
=
u
2
+ 1
u
2
a
11
=
0.279678u
29
+ 0.351240u
28
+ ··· 2.48757u + 0.533668
0.0642443u
29
+ 0.211852u
28
+ ··· 0.962626u + 1.08684
a
10
=
0.343923u
29
+ 0.563092u
28
+ ··· 3.45020u + 1.62051
0.0642443u
29
+ 0.211852u
28
+ ··· 0.962626u + 1.08684
a
7
=
0.293504u
29
+ 0.578779u
28
+ ··· 3.77569u + 2.01661
0.0196924u
29
+ 0.238501u
28
+ ··· 1.68736u + 1.14206
a
9
=
0.642162u
29
+ 1.14610u
28
+ ··· 7.29055u + 2.93572
0.0853310u
29
+ 0.458919u
28
+ ··· 2.98810u + 2.09785
a
8
=
0.565573u
29
+ 1.10421u
28
+ ··· 7.29137u + 2.70821
0.0269374u
29
+ 0.494525u
28
+ ··· 3.51309u + 2.26229
a
12
=
0.298240u
29
+ 0.583012u
28
+ ··· 3.84035u + 1.31521
0.0210866u
29
+ 0.247066u
28
+ ··· 1.02547u + 1.01102
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
13126781461
15762215857
u
29
346887419065
189146590284
u
28
+ ··· +
2455780116659
189146590284
u
364257663059
47286647571
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
30
+ 10u
29
+ ··· u + 16
c
2
, c
5
u
30
+ 2u
29
+ ··· + 11u + 4
c
3
, c
8
u
30
3u
29
+ ··· + 24u + 32
c
6
, c
7
, c
9
c
10
, c
12
u
30
+ 2u
29
+ ··· u + 1
c
11
u
30
8u
29
+ ··· 15u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
30
+ 22y
29
+ ··· + 3743y + 256
c
2
, c
5
y
30
+ 10y
29
+ ··· y + 16
c
3
, c
8
y
30
15y
29
+ ··· 6336y + 1024
c
6
, c
7
, c
9
c
10
, c
12
y
30
+ 8y
29
+ ··· + 15y + 1
c
11
y
30
+ 24y
29
+ ··· + 19y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.460643 + 0.958497I
a = 1.032200 0.246838I
b = 0.299080 0.268098I
0.32179 2.57657I 1.59153 + 5.16266I
u = 0.460643 0.958497I
a = 1.032200 + 0.246838I
b = 0.299080 + 0.268098I
0.32179 + 2.57657I 1.59153 5.16266I
u = 0.117766 + 1.065450I
a = 2.08067 + 0.32615I
b = 0.868345 0.853291I
5.22441 + 3.04204I 6.16892 2.76702I
u = 0.117766 1.065450I
a = 2.08067 0.32615I
b = 0.868345 + 0.853291I
5.22441 3.04204I 6.16892 + 2.76702I
u = 0.892544 + 0.608188I
a = 0.357885 0.459993I
b = 0.660894 1.208280I
3.48880 10.37700I 3.38979 + 5.72342I
u = 0.892544 0.608188I
a = 0.357885 + 0.459993I
b = 0.660894 + 1.208280I
3.48880 + 10.37700I 3.38979 5.72342I
u = 0.835530 + 0.693005I
a = 0.118947 0.761630I
b = 0.596590 0.966034I
1.29700 + 3.10575I 1.45147 3.18731I
u = 0.835530 0.693005I
a = 0.118947 + 0.761630I
b = 0.596590 + 0.966034I
1.29700 3.10575I 1.45147 + 3.18731I
u = 0.513340 + 0.739634I
a = 1.14053 0.97145I
b = 1.145550 0.289264I
1.57253 + 1.48061I 1.51311 + 5.82808I
u = 0.513340 0.739634I
a = 1.14053 + 0.97145I
b = 1.145550 + 0.289264I
1.57253 1.48061I 1.51311 5.82808I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.850935 + 0.293187I
a = 0.444169 0.489109I
b = 0.601963 1.009720I
1.66857 6.29086I 3.10303 + 6.83080I
u = 0.850935 0.293187I
a = 0.444169 + 0.489109I
b = 0.601963 + 1.009720I
1.66857 + 6.29086I 3.10303 6.83080I
u = 0.590492 + 0.982207I
a = 0.644113 1.170090I
b = 1.149850 + 0.591978I
2.48088 + 3.02207I 2.21456 6.76782I
u = 0.590492 0.982207I
a = 0.644113 + 1.170090I
b = 1.149850 0.591978I
2.48088 3.02207I 2.21456 + 6.76782I
u = 0.120227 + 1.185320I
a = 1.71764 + 0.85667I
b = 0.727551 1.085270I
3.53890 9.16679I 2.72882 + 7.28806I
u = 0.120227 1.185320I
a = 1.71764 0.85667I
b = 0.727551 + 1.085270I
3.53890 + 9.16679I 2.72882 7.28806I
u = 0.537667 + 0.602506I
a = 0.295236 + 0.519101I
b = 0.023047 + 0.423163I
0.81059 1.39109I 1.55512 + 4.14990I
u = 0.537667 0.602506I
a = 0.295236 0.519101I
b = 0.023047 0.423163I
0.81059 + 1.39109I 1.55512 4.14990I
u = 0.530973 + 1.119350I
a = 0.144119 0.924498I
b = 0.645054 + 0.883761I
0.91910 + 1.29166I 0.69831 3.06877I
u = 0.530973 1.119350I
a = 0.144119 + 0.924498I
b = 0.645054 0.883761I
0.91910 1.29166I 0.69831 + 3.06877I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.730890 + 1.026770I
a = 1.64352 + 1.06510I
b = 0.646060 + 1.041760I
0.26873 8.97735I 0.28174 + 7.42318I
u = 0.730890 1.026770I
a = 1.64352 1.06510I
b = 0.646060 1.041760I
0.26873 + 8.97735I 0.28174 7.42318I
u = 0.896688 + 0.897515I
a = 0.544249 + 0.743729I
b = 0.269532 + 0.876061I
9.52166 + 4.35690I 1.93733 9.19475I
u = 0.896688 0.897515I
a = 0.544249 0.743729I
b = 0.269532 0.876061I
9.52166 4.35690I 1.93733 + 9.19475I
u = 0.875554 + 0.943207I
a = 0.406635 0.439577I
b = 0.231064 0.841743I
9.37686 + 2.17701I 0.69666 + 4.17919I
u = 0.875554 0.943207I
a = 0.406635 + 0.439577I
b = 0.231064 + 0.841743I
9.37686 2.17701I 0.69666 4.17919I
u = 0.719689 + 1.077380I
a = 2.03341 + 0.65165I
b = 0.70309 + 1.23931I
2.0453 + 16.3438I 1.41001 9.88978I
u = 0.719689 1.077380I
a = 2.03341 0.65165I
b = 0.70309 1.23931I
2.0453 16.3438I 1.41001 + 9.88978I
u = 0.460792 + 0.211623I
a = 0.159496 1.172690I
b = 0.708800 0.487048I
1.26041 + 1.13919I 3.24420 2.21188I
u = 0.460792 0.211623I
a = 0.159496 + 1.172690I
b = 0.708800 + 0.487048I
1.26041 1.13919I 3.24420 + 2.21188I
7
II.
I
u
2
= h3u
18
a3u
18
+· · ·a1, 2u
18
3u
17
+· · ·4a+5, u
19
u
18
+· · ·+2u+1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
4
=
u
2
+ 1
u
2
a
11
=
a
3
2
u
18
a +
3
2
u
18
+ ··· +
1
2
a +
1
2
a
10
=
3
2
u
18
a +
3
2
u
18
+ ··· +
3
2
a +
1
2
3
2
u
18
a +
3
2
u
18
+ ··· +
1
2
a +
1
2
a
7
=
2u
17
a u
17
+ ··· a + 4
3
2
u
18
a
3
2
u
18
+ ···
1
2
a
1
2
a
9
=
u
13
2u
11
3u
9
2u
7
+ u
u
15
3u
13
6u
11
7u
9
6u
7
4u
5
2u
3
u
a
8
=
u
18
+ 3u
16
+ 6u
14
+ 7u
12
+ 5u
10
+ 3u
8
u
2
1
u
18
u
17
+ ··· 3u 1
a
12
=
1
2
u
18
a +
3
2
u
18
+ ··· +
1
2
a
1
2
2u
18
a + 3u
18
+ ··· + au 4u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
17
+ 4u
16
12u
15
+ 12u
14
28u
13
+ 24u
12
36u
11
+ 32u
10
36u
9
+ 28u
8
28u
7
+ 28u
6
12u
5
+ 16u
4
12u
3
+ 12u
2
+ 4u + 6
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
19
+ 7u
18
+ ··· + 2u 1)
2
c
2
, c
5
(u
19
+ u
18
+ ··· + 2u 1)
2
c
3
, c
8
(u
19
+ u
18
+ ··· u
2
+ 1)
2
c
6
, c
7
, c
9
c
10
, c
12
u
38
5u
37
+ ··· 173u + 34
c
11
u
38
19u
37
+ ··· 13387u + 1156
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
19
+ 11y
18
+ ··· + 42y 1)
2
c
2
, c
5
(y
19
+ 7y
18
+ ··· + 2y 1)
2
c
3
, c
8
(y
19
5y
18
+ ··· + 2y 1)
2
c
6
, c
7
, c
9
c
10
, c
12
y
38
+ 19y
37
+ ··· + 13387y + 1156
c
11
y
38
y
37
+ ··· + 7530783y + 1336336
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.787239 + 0.559366I
a = 0.516479 + 0.470519I
b = 0.991761 + 0.337645I
0.85217 4.39903I 0.93348 + 2.80289I
u = 0.787239 + 0.559366I
a = 0.195675 + 0.232139I
b = 0.689098 + 1.130990I
0.85217 4.39903I 0.93348 + 2.80289I
u = 0.787239 0.559366I
a = 0.516479 0.470519I
b = 0.991761 0.337645I
0.85217 + 4.39903I 0.93348 2.80289I
u = 0.787239 0.559366I
a = 0.195675 0.232139I
b = 0.689098 1.130990I
0.85217 + 4.39903I 0.93348 2.80289I
u = 0.709462 + 0.766103I
a = 0.585393 + 0.482577I
b = 0.678167 0.996758I
6.91199 0.16816I 6.16829 + 0.91431I
u = 0.709462 + 0.766103I
a = 1.214050 + 0.700043I
b = 0.19863 + 1.44121I
6.91199 0.16816I 6.16829 + 0.91431I
u = 0.709462 0.766103I
a = 0.585393 0.482577I
b = 0.678167 + 0.996758I
6.91199 + 0.16816I 6.16829 0.91431I
u = 0.709462 0.766103I
a = 1.214050 0.700043I
b = 0.19863 1.44121I
6.91199 + 0.16816I 6.16829 0.91431I
u = 0.588600 + 0.865037I
a = 0.49489 2.57683I
b = 0.138356 1.097670I
3.75823 2.32534I 1.72826 + 3.09456I
u = 0.588600 + 0.865037I
a = 3.97835 + 1.04025I
b = 0.197824 + 0.975432I
3.75823 2.32534I 1.72826 + 3.09456I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.588600 0.865037I
a = 0.49489 + 2.57683I
b = 0.138356 + 1.097670I
3.75823 + 2.32534I 1.72826 3.09456I
u = 0.588600 0.865037I
a = 3.97835 1.04025I
b = 0.197824 0.975432I
3.75823 + 2.32534I 1.72826 3.09456I
u = 0.745489 + 0.500016I
a = 0.352472 + 0.544649I
b = 0.564915 + 0.608349I
0.45606 1.53005I 0.20605 + 2.54963I
u = 0.745489 + 0.500016I
a = 0.147251 + 0.364183I
b = 0.536858 + 0.708989I
0.45606 1.53005I 0.20605 + 2.54963I
u = 0.745489 0.500016I
a = 0.352472 0.544649I
b = 0.564915 0.608349I
0.45606 + 1.53005I 0.20605 2.54963I
u = 0.745489 0.500016I
a = 0.147251 0.364183I
b = 0.536858 0.708989I
0.45606 + 1.53005I 0.20605 2.54963I
u = 0.021471 + 1.128170I
a = 1.52252 1.09613I
b = 0.800008 + 0.907616I
5.01775 3.11880I 5.58624 + 2.69239I
u = 0.021471 + 1.128170I
a = 1.81596 0.53999I
b = 0.913287 + 0.607157I
5.01775 3.11880I 5.58624 + 2.69239I
u = 0.021471 1.128170I
a = 1.52252 + 1.09613I
b = 0.800008 0.907616I
5.01775 + 3.11880I 5.58624 2.69239I
u = 0.021471 1.128170I
a = 1.81596 + 0.53999I
b = 0.913287 0.607157I
5.01775 + 3.11880I 5.58624 2.69239I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.167515 + 0.839557I
a = 0.857565 0.800159I
b = 0.003570 + 1.177280I
1.87881 1.72326I 3.81965 + 5.18112I
u = 0.167515 + 0.839557I
a = 0.78439 + 2.81455I
b = 0.197548 0.604455I
1.87881 1.72326I 3.81965 + 5.18112I
u = 0.167515 0.839557I
a = 0.857565 + 0.800159I
b = 0.003570 1.177280I
1.87881 + 1.72326I 3.81965 5.18112I
u = 0.167515 0.839557I
a = 0.78439 2.81455I
b = 0.197548 + 0.604455I
1.87881 + 1.72326I 3.81965 5.18112I
u = 0.687512 + 0.928828I
a = 0.992722 0.197204I
b = 0.09297 1.48296I
6.41945 + 5.52702I 4.42794 7.00248I
u = 0.687512 + 0.928828I
a = 1.93781 + 0.22445I
b = 0.765375 + 0.868851I
6.41945 + 5.52702I 4.42794 7.00248I
u = 0.687512 0.928828I
a = 0.992722 + 0.197204I
b = 0.09297 + 1.48296I
6.41945 5.52702I 4.42794 + 7.00248I
u = 0.687512 0.928828I
a = 1.93781 0.22445I
b = 0.765375 0.868851I
6.41945 5.52702I 4.42794 + 7.00248I
u = 0.636878 + 1.050560I
a = 0.005727 + 0.813937I
b = 0.717895 0.570311I
1.12421 3.71612I 2.19900 + 2.45937I
u = 0.636878 + 1.050560I
a = 1.69165 0.73976I
b = 0.636967 0.819328I
1.12421 3.71612I 2.19900 + 2.45937I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.636878 1.050560I
a = 0.005727 0.813937I
b = 0.717895 + 0.570311I
1.12421 + 3.71612I 2.19900 2.45937I
u = 0.636878 1.050560I
a = 1.69165 + 0.73976I
b = 0.636967 + 0.819328I
1.12421 + 3.71612I 2.19900 2.45937I
u = 0.666721 + 1.052350I
a = 0.652896 + 1.081010I
b = 1.105990 0.392926I
0.60648 + 9.88550I 1.13872 7.31129I
u = 0.666721 + 1.052350I
a = 2.00964 0.51551I
b = 0.792055 1.166900I
0.60648 + 9.88550I 1.13872 7.31129I
u = 0.666721 1.052350I
a = 0.652896 1.081010I
b = 1.105990 + 0.392926I
0.60648 9.88550I 1.13872 + 7.31129I
u = 0.666721 1.052350I
a = 2.00964 + 0.51551I
b = 0.792055 + 1.166900I
0.60648 9.88550I 1.13872 + 7.31129I
u = 0.381963
a = 2.43810 + 0.93795I
b = 0.222910 1.071950I
4.19724 7.47220
u = 0.381963
a = 2.43810 0.93795I
b = 0.222910 + 1.071950I
4.19724 7.47220
14
III. I
u
3
= h−u
3
+ au u
2
+ b + 1, 2u
3
a + u
3
+ · · · + a
2
5, u
4
+ u
3
+ u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
3
+ u
2
+ 1
a
4
=
u
2
+ 1
u
2
a
11
=
a
u
3
au + u
2
1
a
10
=
u
3
au + u
2
+ a 1
u
3
au + u
2
1
a
7
=
u
3
a u
2
a 3u
3
5u
2
+ a 5u 1
1
a
9
=
u
3
au + u
2
1
0
a
8
=
u
3
a u
2
a a 1
u
2
a + au a + u
a
12
=
u
3
+ a
2u
3
au + 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
4u + 4
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
4
u
3
+ 3u
2
2u + 1)
2
c
2
(u
4
u
3
+ u
2
+ 1)
2
c
3
, c
8
u
8
5u
6
+ 7u
4
2u
2
+ 1
c
5
(u
4
+ u
3
+ u
2
+ 1)
2
c
6
, c
7
, c
9
c
10
, c
12
(u
2
+ 1)
4
c
11
(u + 1)
8
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
c
2
, c
5
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
c
3
, c
8
(y
4
5y
3
+ 7y
2
2y + 1)
2
c
6
, c
7
, c
9
c
10
, c
12
(y + 1)
8
c
11
(y 1)
8
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.351808 + 0.720342I
a = 1.71161 + 1.80064I
b = 1.000000I
3.07886 + 1.41510I 4.17326 4.90874I
u = 0.351808 + 0.720342I
a = 0.53013 + 2.89548I
b = 1.000000I
3.07886 + 1.41510I 4.17326 4.90874I
u = 0.351808 0.720342I
a = 1.71161 1.80064I
b = 1.000000I
3.07886 1.41510I 4.17326 + 4.90874I
u = 0.351808 0.720342I
a = 0.53013 2.89548I
b = 1.000000I
3.07886 1.41510I 4.17326 + 4.90874I
u = 0.851808 + 0.911292I
a = 0.994913 + 0.491876I
b = 1.000000I
10.08060 3.16396I 7.82674 + 2.56480I
u = 0.851808 + 0.911292I
a = 0.176391 0.602971I
b = 1.000000I
10.08060 3.16396I 7.82674 + 2.56480I
u = 0.851808 0.911292I
a = 0.994913 0.491876I
b = 1.000000I
10.08060 + 3.16396I 7.82674 2.56480I
u = 0.851808 0.911292I
a = 0.176391 + 0.602971I
b = 1.000000I
10.08060 + 3.16396I 7.82674 2.56480I
18
IV. I
u
4
= hb 1, 2a + 2u + 1, u
2
u + 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u 1
a
3
=
u
u 1
a
1
=
1
0
a
4
=
u
u 1
a
11
=
u
1
2
1
a
10
=
u +
1
2
1
a
7
=
u +
3
2
1
a
9
=
2u + 2
2
a
8
=
2u + 2
2
a
12
=
u +
1
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
31
4
u + 2
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
3
, c
8
u
2
c
6
, c
7
, c
11
(u 1)
2
c
9
, c
10
, c
12
(u + 1)
2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
y
2
+ y + 1
c
3
, c
8
y
2
c
6
, c
7
, c
9
c
10
, c
11
, c
12
(y 1)
2
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.000000 0.866025I
b = 1.00000
1.64493 + 2.02988I 1.87500 6.71170I
u = 0.500000 0.866025I
a = 1.000000 + 0.866025I
b = 1.00000
1.64493 2.02988I 1.87500 + 6.71170I
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
2
u + 1)(u
4
u
3
+ 3u
2
2u + 1)
2
(u
19
+ 7u
18
+ ··· + 2u 1)
2
· (u
30
+ 10u
29
+ ··· u + 16)
c
2
(u
2
+ u + 1)(u
4
u
3
+ u
2
+ 1)
2
(u
19
+ u
18
+ ··· + 2u 1)
2
· (u
30
+ 2u
29
+ ··· + 11u + 4)
c
3
, c
8
u
2
(u
8
5u
6
+ ··· 2u
2
+ 1)(u
19
+ u
18
+ ··· u
2
+ 1)
2
· (u
30
3u
29
+ ··· + 24u + 32)
c
5
(u
2
u + 1)(u
4
+ u
3
+ u
2
+ 1)
2
(u
19
+ u
18
+ ··· + 2u 1)
2
· (u
30
+ 2u
29
+ ··· + 11u + 4)
c
6
, c
7
((u 1)
2
)(u
2
+ 1)
4
(u
30
+ 2u
29
+ ··· u + 1)
· (u
38
5u
37
+ ··· 173u + 34)
c
9
, c
10
, c
12
((u + 1)
2
)(u
2
+ 1)
4
(u
30
+ 2u
29
+ ··· u + 1)
· (u
38
5u
37
+ ··· 173u + 34)
c
11
((u 1)
2
)(u + 1)
8
(u
30
8u
29
+ ··· 15u + 1)
· (u
38
19u
37
+ ··· 13387u + 1156)
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
2
+ y + 1)(y
4
+ 5y
3
+ ··· + 2y + 1)
2
(y
19
+ 11y
18
+ ··· + 42y 1)
2
· (y
30
+ 22y
29
+ ··· + 3743y + 256)
c
2
, c
5
(y
2
+ y + 1)(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
(y
19
+ 7y
18
+ ··· + 2y 1)
2
· (y
30
+ 10y
29
+ ··· y + 16)
c
3
, c
8
y
2
(y
4
5y
3
+ ··· 2y + 1)
2
(y
19
5y
18
+ ··· + 2y 1)
2
· (y
30
15y
29
+ ··· 6336y + 1024)
c
6
, c
7
, c
9
c
10
, c
12
((y 1)
2
)(y + 1)
8
(y
30
+ 8y
29
+ ··· + 15y + 1)
· (y
38
+ 19y
37
+ ··· + 13387y + 1156)
c
11
((y 1)
10
)(y
30
+ 24y
29
+ ··· + 19y + 1)
· (y
38
y
37
+ ··· + 7530783y + 1336336)
24