12n
0270
(K12n
0270
)
A knot diagram
1
Linearized knot diagam
3 5 9 6 2 11 10 12 4 7 9 11
Solving Sequence
6,11 2,7
5 3 1 4 10 8 9 12
c
6
c
5
c
2
c
1
c
4
c
10
c
7
c
9
c
11
c
3
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h159u
20
349u
19
+ ··· + 1024b + 97, 65u
20
195u
19
+ ··· + 2048a + 2111, u
21
2u
20
+ ··· + 5u
2
1i
I
u
2
= h2u
7
+ 5u
6
+ 11u
5
+ 22u
4
+ 25u
3
+ 24u
2
+ 7b + 15u + 1,
19u
7
36u
6
87u
5
172u
4
186u
3
164u
2
+ 14a 133u 3,
u
8
+ 2u
7
+ 5u
6
+ 10u
5
+ 12u
4
+ 12u
3
+ 11u
2
+ 3u + 2i
I
u
3
= h−a
2
+ 2au + b + 2a 2u 1, a
4
3a
3
u 4a
3
+ 9a
2
u + 5a
2
11au 2a + 5u + 1, u
2
+ 1i
I
u
4
= h3642u
11
+ 10715u
10
+ ··· + 16346b + 454, 9302u
11
+ 5482u
10
+ ··· + 277882a 125487,
u
12
+ 3u
11
+ 11u
10
+ 23u
9
+ 46u
8
+ 68u
7
+ 94u
6
+ 99u
5
+ 97u
4
+ 76u
3
+ 52u
2
+ 26u + 17i
I
u
5
= hb + 2a + 2, 4a
2
+ 10a + 7, u + 1i
* 5 irreducible components of dim
C
= 0, with total 51 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h159u
20
349u
19
+ · · · + 1024b + 97, 65u
20
195u
19
+ · · · + 2048a +
2111, u
21
2u
20
+ · · · + 5u
2
1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
2
=
0.0317383u
20
+ 0.0952148u
19
+ ··· + 6.03076u 1.03076
0.155273u
20
+ 0.340820u
19
+ ··· + 0.219727u 0.0947266
a
7
=
1
u
2
a
5
=
0.395996u
20
+ 0.992676u
19
+ ··· + 0.588379u + 0.591309
0.114258u
20
0.327148u
19
+ ··· + 0.583008u 0.442383
a
3
=
0.340332u
20
+ 0.810059u
19
+ ··· + 1.36279u + 0.301270
0.106445u
20
0.0537109u
19
+ ··· + 0.825195u 0.684570
a
1
=
u
0.0312500u
20
0.0312500u
19
+ ··· + 0.968750u 0.0312500
a
4
=
0.281738u
20
+ 0.665527u
19
+ ··· + 1.17139u + 0.148926
0.114258u
20
0.327148u
19
+ ··· + 0.583008u 0.442383
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
9
=
1
0.0312500u
20
0.0937500u
19
+ ··· 0.0312500u + 0.0312500
a
12
=
u
0.0312500u
20
0.0312500u
19
+ ··· + 0.968750u 0.0312500
(ii) Obstruction class = 1
(iii) Cusp Shapes =
9279
4096
u
20
13821
4096
u
19
+ ··· +
13503
4096
u +
26625
4096
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
21
+ 8u
20
+ ··· + 145u 16
c
2
, c
5
u
21
+ 2u
20
+ ··· + 9u 4
c
3
, c
9
u
21
+ 3u
20
+ ··· 8u 32
c
6
, c
7
, c
8
c
10
, c
11
u
21
2u
20
+ ··· + 5u
2
1
c
12
u
21
+ 26u
20
+ ··· + 10u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
21
+ 12y
20
+ ··· + 51681y 256
c
2
, c
5
y
21
+ 8y
20
+ ··· + 145y 16
c
3
, c
9
y
21
5y
20
+ ··· 4928y 1024
c
6
, c
7
, c
8
c
10
, c
11
y
21
+ 26y
20
+ ··· + 10y 1
c
12
y
21
66y
20
+ ··· + 126y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.458142 + 0.833548I
a = 0.677568 0.339414I
b = 0.773041 + 0.928850I
4.17175 1.61049I 8.87690 1.72492I
u = 0.458142 0.833548I
a = 0.677568 + 0.339414I
b = 0.773041 0.928850I
4.17175 + 1.61049I 8.87690 + 1.72492I
u = 0.334381 + 0.773560I
a = 1.290350 0.376146I
b = 0.805389 0.873526I
4.35172 + 4.34513I 10.07573 8.03255I
u = 0.334381 0.773560I
a = 1.290350 + 0.376146I
b = 0.805389 + 0.873526I
4.35172 4.34513I 10.07573 + 8.03255I
u = 1.216790 + 0.212353I
a = 1.211710 + 0.267891I
b = 0.377864 0.854536I
1.30694 + 1.63824I 1.29573 + 4.22399I
u = 1.216790 0.212353I
a = 1.211710 0.267891I
b = 0.377864 + 0.854536I
1.30694 1.63824I 1.29573 4.22399I
u = 0.097170 + 0.403788I
a = 0.57317 + 1.41705I
b = 0.207107 + 0.829659I
1.22812 + 1.66803I 2.33962 5.96953I
u = 0.097170 0.403788I
a = 0.57317 1.41705I
b = 0.207107 0.829659I
1.22812 1.66803I 2.33962 + 5.96953I
u = 0.381501
a = 0.337636
b = 0.264712
0.708376 14.4470
u = 0.02913 + 1.62816I
a = 0.961297 + 0.342959I
b = 1.038150 0.513588I
10.09800 1.80625I 3.06957 + 1.66115I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.02913 1.62816I
a = 0.961297 0.342959I
b = 1.038150 + 0.513588I
10.09800 + 1.80625I 3.06957 1.66115I
u = 0.38269 + 1.61174I
a = 0.856171 + 0.551613I
b = 1.005420 0.467651I
10.43370 7.89166I 3.87913 + 3.10640I
u = 0.38269 1.61174I
a = 0.856171 0.551613I
b = 1.005420 + 0.467651I
10.43370 + 7.89166I 3.87913 3.10640I
u = 0.10115 + 1.67309I
a = 1.266450 + 0.124462I
b = 0.725547 + 1.193790I
12.24280 + 4.61265I 1.46303 2.55091I
u = 0.10115 1.67309I
a = 1.266450 0.124462I
b = 0.725547 1.193790I
12.24280 4.61265I 1.46303 + 2.55091I
u = 0.49023 + 1.63779I
a = 1.53317 + 0.26133I
b = 0.694270 + 1.177460I
12.6524 14.0619I 2.23345 + 6.95334I
u = 0.49023 1.63779I
a = 1.53317 0.26133I
b = 0.694270 1.177460I
12.6524 + 14.0619I 2.23345 6.95334I
u = 0.265665 + 0.100260I
a = 3.22189 + 1.30088I
b = 0.565254 0.857227I
0.38970 2.24826I 1.51589 + 3.88242I
u = 0.265665 0.100260I
a = 3.22189 1.30088I
b = 0.565254 + 0.857227I
0.38970 + 2.24826I 1.51589 3.88242I
u = 0.23068 + 1.77893I
a = 0.111321 0.270180I
b = 0.012425 1.345530I
17.3796 4.8017I 0.50589 + 2.16688I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.23068 1.77893I
a = 0.111321 + 0.270180I
b = 0.012425 + 1.345530I
17.3796 + 4.8017I 0.50589 2.16688I
7
II.
I
u
2
= h2u
7
+5u
6
+· · ·+7b+1, 19u
7
36u
6
+· · ·+14a3, u
8
+2u
7
+· · ·+3u+2i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
2
=
19
14
u
7
+
18
7
u
6
+ ··· +
19
2
u +
3
14
2
7
u
7
5
7
u
6
+ ···
15
7
u
1
7
a
7
=
1
u
2
a
5
=
0.785714u
7
+ 1.71429u
6
+ ··· + 8.64286u + 3.64286
2
7
u
7
4
7
u
6
+ ···
16
7
u
5
7
a
3
=
u
7
+
16
7
u
6
+ ··· +
75
7
u +
20
7
2
7
u
7
6
7
u
6
+ ··· 3u
4
7
a
1
=
0.785714u
7
+ 1.57143u
6
+ ··· + 7.78571u + 2.21429
2
7
u
7
4
7
u
6
+ ···
16
7
u
5
7
a
4
=
1
2
u
7
+
8
7
u
6
+ ··· +
89
14
u +
41
14
2
7
u
7
4
7
u
6
+ ···
16
7
u
5
7
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
9
=
5
14
u
7
3
7
u
6
+ ···
9
14
u +
31
14
1
7
u
6
2
7
u
4
+ ··· +
1
7
u
3
7
a
12
=
0.785714u
7
+ 1.57143u
6
+ ··· + 7.78571u + 2.21429
3
7
u
7
4
7
u
6
+ ···
5
7
u
5
7
(ii) Obstruction class = 1
(iii) Cusp Shapes =
8
7
u
7
+
20
7
u
6
+
44
7
u
5
+
88
7
u
4
+
128
7
u
3
+
96
7
u
2
+
88
7
u +
74
7
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
4
+ 2u
3
+ 3u
2
+ u + 1)
2
c
2
, c
5
(u
4
+ u
2
u + 1)
2
c
3
, c
9
(u
4
+ u
2
+ u + 1)
2
c
6
, c
7
, c
8
c
10
, c
11
u
8
+ 2u
7
+ 5u
6
+ 10u
5
+ 12u
4
+ 12u
3
+ 11u
2
+ 3u + 2
c
12
u
8
+ 6u
7
+ 9u
6
6u
5
+ 6u
4
+ 80u
3
+ 97u
2
+ 35u + 4
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)
2
c
2
, c
3
, c
5
c
9
(y
4
+ 2y
3
+ 3y
2
+ y + 1)
2
c
6
, c
7
, c
8
c
10
, c
11
y
8
+ 6y
7
+ 9y
6
6y
5
+ 6y
4
+ 80y
3
+ 97y
2
+ 35y + 4
c
12
y
8
18y
7
+ ··· 449y + 16
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.003353 + 1.153470I
a = 0.283780 0.486090I
b = 0.547424 + 0.585652I
2.30977 + 1.39709I 7.77019 3.86736I
u = 0.003353 1.153470I
a = 0.283780 + 0.486090I
b = 0.547424 0.585652I
2.30977 1.39709I 7.77019 + 3.86736I
u = 1.281480 + 0.482756I
a = 1.44914 0.47651I
b = 0.547424 + 1.120870I
5.91490 7.64338I 2.22981 + 6.51087I
u = 1.281480 0.482756I
a = 1.44914 + 0.47651I
b = 0.547424 1.120870I
5.91490 + 7.64338I 2.22981 6.51087I
u = 0.046668 + 0.512275I
a = 2.11815 + 3.03669I
b = 0.547424 0.585652I
2.30977 1.39709I 7.77019 + 3.86736I
u = 0.046668 0.512275I
a = 2.11815 3.03669I
b = 0.547424 + 0.585652I
2.30977 + 1.39709I 7.77019 3.86736I
u = 0.32480 + 1.70994I
a = 1.135230 0.382122I
b = 0.547424 1.120870I
5.91490 + 7.64338I 2.22981 6.51087I
u = 0.32480 1.70994I
a = 1.135230 + 0.382122I
b = 0.547424 + 1.120870I
5.91490 7.64338I 2.22981 + 6.51087I
11
III. I
u
3
= h−a
2
+ 2au + b + 2a 2u 1, 3a
3
u + 9a
2
u + · · · 2a + 1, u
2
+ 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
2
=
a
a
2
2au 2a + 2u + 1
a
7
=
1
1
a
5
=
a
3
2a
2
u 2a
2
+ 2au + a + 1
a
3
u + 3a
2
u 3a
2
au + 6a u 4
a
3
=
a
3
u + 4a
2
u 2a
2
5au + 6a + 3u 4
a
3
u 3a
2
u + 4a
2
8a + 2u + 6
a
1
=
u
au u + 2
a
4
=
a
3
u + a
3
+ a
2
u 5a
2
+ au + 7a u 3
a
3
u + 3a
2
u 3a
2
au + 6a u 4
a
10
=
u
0
a
8
=
0
1
a
9
=
1
a + 2u + 1
a
12
=
u
au + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
3
u 12a
2
u + 8a
2
+ 12au 16a 4u + 12
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
4
u
3
+ 3u
2
2u + 1)
2
c
2
(u
4
u
3
+ u
2
+ 1)
2
c
3
, c
9
u
8
5u
6
+ 7u
4
2u
2
+ 1
c
5
(u
4
+ u
3
+ u
2
+ 1)
2
c
6
, c
7
, c
8
c
10
, c
11
(u
2
+ 1)
4
c
12
(u + 1)
8
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
c
2
, c
5
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
c
3
, c
9
(y
4
5y
3
+ 7y
2
2y + 1)
2
c
6
, c
7
, c
8
c
10
, c
11
(y + 1)
8
c
12
(y 1)
8
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.674360 0.399232I
b = 0.851808 + 0.911292I
3.50087 3.16396I 3.82674 + 2.56480I
u = 1.000000I
a = 1.325640 0.399232I
b = 0.851808 0.911292I
3.50087 + 3.16396I 3.82674 2.56480I
u = 1.000000I
a = 0.59947 + 1.89923I
b = 0.351808 0.720342I
3.50087 1.41510I 0.17326 + 4.90874I
u = 1.000000I
a = 1.40053 + 1.89923I
b = 0.351808 + 0.720342I
3.50087 + 1.41510I 0.17326 4.90874I
u = 1.000000I
a = 0.674360 + 0.399232I
b = 0.851808 0.911292I
3.50087 + 3.16396I 3.82674 2.56480I
u = 1.000000I
a = 1.325640 + 0.399232I
b = 0.851808 + 0.911292I
3.50087 3.16396I 3.82674 + 2.56480I
u = 1.000000I
a = 0.59947 1.89923I
b = 0.351808 + 0.720342I
3.50087 + 1.41510I 0.17326 4.90874I
u = 1.000000I
a = 1.40053 1.89923I
b = 0.351808 0.720342I
3.50087 1.41510I 0.17326 + 4.90874I
15
IV. I
u
4
= h3642u
11
+ 10715u
10
+ · · · + 16346b + 454, 9302u
11
+ 5482u
10
+
· · · + 277882a 125487, u
12
+ 3u
11
+ · · · + 26u + 17i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
2
=
0.0334746u
11
0.0197278u
10
+ ··· + 2.00276u + 0.451584
0.222807u
11
0.655512u
10
+ ··· 1.99700u 0.0277744
a
7
=
1
u
2
a
5
=
0.128213u
11
+ 0.278557u
10
+ ··· 4.21560u 3.08761
0.0231249u
11
0.186651u
10
+ ··· 0.439557u 0.366145
a
3
=
0.0932842u
11
+ 0.0428527u
10
+ ··· 4.81556u 3.27790
0.0855255u
11
0.333170u
10
+ ··· 1.36376u 0.854154
a
1
=
0.125996u
11
+ 0.290076u
10
+ ··· + 3.62135u + 1.59297
0.0671724u
11
0.113606u
10
+ ··· 0.562523u 0.0635630
a
4
=
0.105088u
11
+ 0.0919059u
10
+ ··· 4.65516u 3.45376
0.0231249u
11
0.186651u
10
+ ··· 0.439557u 0.366145
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
9
=
0.00373900u
11
+ 0.0559554u
10
+ ··· + 0.431964u + 1.46531
0.0879114u
11
+ 0.316714u
10
+ ··· + 1.68292u + 0.141931
a
12
=
0.125996u
11
+ 0.290076u
10
+ ··· + 3.62135u + 1.59297
0.0141931u
11
0.0431298u
10
+ ··· 0.706289u 1.55806
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2796
8173
u
11
+
10892
8173
u
10
+
36956
8173
u
9
+
76592
8173
u
8
+
143424
8173
u
7
+
188928
8173
u
6
+
226188
8173
u
5
+
193280
8173
u
4
+
144560
8173
u
3
+
67608
8173
u
2
+
44584
8173
u +
44270
8173
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
2
c
2
, c
5
(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
2
c
3
, c
9
(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
2
c
6
, c
7
, c
8
c
10
, c
11
u
12
+ 3u
11
+ ··· + 26u + 17
c
12
u
12
+ 13u
11
+ ··· + 1092u + 289
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
2
c
2
, c
3
, c
5
c
9
(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
2
c
6
, c
7
, c
8
c
10
, c
11
y
12
+ 13y
11
+ ··· + 1092y + 289
c
12
y
12
19y
11
+ ··· 7564y + 83521
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.942355 + 0.499238I
a = 1.51895 + 0.47306I
b = 0.713912 0.305839I
3.55561 2.82812I 5.50976 + 2.97945I
u = 0.942355 0.499238I
a = 1.51895 0.47306I
b = 0.713912 + 0.305839I
3.55561 + 2.82812I 5.50976 2.97945I
u = 0.343993 + 0.784320I
a = 3.38338 0.25597I
b = 0.498832 + 1.001300I
3.55561 + 2.82812I 5.50976 2.97945I
u = 0.343993 0.784320I
a = 3.38338 + 0.25597I
b = 0.498832 1.001300I
3.55561 2.82812I 5.50976 + 2.97945I
u = 0.072139 + 1.221000I
a = 0.36108 1.66788I
b = 0.498832 1.001300I
3.55561 2.82812I 5.50976 + 2.97945I
u = 0.072139 1.221000I
a = 0.36108 + 1.66788I
b = 0.498832 + 1.001300I
3.55561 + 2.82812I 5.50976 2.97945I
u = 0.98583 + 1.05129I
a = 0.337035 + 0.395158I
b = 0.284920 1.115140I
7.69319 6 1.019511 + 0.10I
u = 0.98583 1.05129I
a = 0.337035 0.395158I
b = 0.284920 + 1.115140I
7.69319 6 1.019511 + 0.10I
u = 0.18858 + 1.49820I
a = 0.690257 0.163478I
b = 0.713912 + 0.305839I
3.55561 + 2.82812I 5.50976 2.97945I
u = 0.18858 1.49820I
a = 0.690257 + 0.163478I
b = 0.713912 0.305839I
3.55561 2.82812I 5.50976 + 2.97945I
19
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.17653 + 1.68674I
a = 0.786457 + 0.514816I
b = 0.284920 + 1.115140I
7.69319 6 1.019511 + 0.10I
u = 0.17653 1.68674I
a = 0.786457 0.514816I
b = 0.284920 1.115140I
7.69319 6 1.019511 + 0.10I
20
V. I
u
5
= hb + 2a + 2, 4a
2
+ 10a + 7, u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
1
a
2
=
a
2a 2
a
7
=
1
1
a
5
=
3a +
9
2
2a 3
a
3
=
a +
3
2
2a 3
a
1
=
1
0
a
4
=
a +
3
2
2a 3
a
10
=
1
2
a
8
=
2
3
a
9
=
1
2
a
12
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
31
2
a +
59
2
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
3
, c
9
u
2
c
6
, c
7
, c
8
(u + 1)
2
c
10
, c
11
, c
12
(u 1)
2
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
y
2
+ y + 1
c
3
, c
9
y
2
c
6
, c
7
, c
8
c
10
, c
11
, c
12
(y 1)
2
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.250000 + 0.433013I
b = 0.500000 0.866025I
1.64493 2.02988I 10.12500 + 6.71170I
u = 1.00000
a = 1.250000 0.433013I
b = 0.500000 + 0.866025I
1.64493 + 2.02988I 10.12500 6.71170I
24
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
2
u + 1)(u
4
u
3
+ 3u
2
2u + 1)
2
(u
4
+ 2u
3
+ 3u
2
+ u + 1)
2
· ((u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
2
)(u
21
+ 8u
20
+ ··· + 145u 16)
c
2
(u
2
+ u + 1)(u
4
+ u
2
u + 1)
2
(u
4
u
3
+ u
2
+ 1)
2
· ((u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
2
)(u
21
+ 2u
20
+ ··· + 9u 4)
c
3
, c
9
u
2
(u
4
+ u
2
+ u + 1)
2
(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
2
· (u
8
5u
6
+ 7u
4
2u
2
+ 1)(u
21
+ 3u
20
+ ··· 8u 32)
c
5
(u
2
u + 1)(u
4
+ u
2
u + 1)
2
(u
4
+ u
3
+ u
2
+ 1)
2
· ((u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
2
)(u
21
+ 2u
20
+ ··· + 9u 4)
c
6
, c
7
, c
8
(u + 1)
2
(u
2
+ 1)
4
· (u
8
+ 2u
7
+ 5u
6
+ 10u
5
+ 12u
4
+ 12u
3
+ 11u
2
+ 3u + 2)
· (u
12
+ 3u
11
+ ··· + 26u + 17)(u
21
2u
20
+ ··· + 5u
2
1)
c
10
, c
11
(u 1)
2
(u
2
+ 1)
4
· (u
8
+ 2u
7
+ 5u
6
+ 10u
5
+ 12u
4
+ 12u
3
+ 11u
2
+ 3u + 2)
· (u
12
+ 3u
11
+ ··· + 26u + 17)(u
21
2u
20
+ ··· + 5u
2
1)
c
12
((u 1)
2
)(u + 1)
8
(u
8
+ 6u
7
+ ··· + 35u + 4)
· (u
12
+ 13u
11
+ ··· + 1092u + 289)(u
21
+ 26u
20
+ ··· + 10u 1)
25
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
2
+ y + 1)(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)
2
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
· ((y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
2
)(y
21
+ 12y
20
+ ··· + 51681y 256)
c
2
, c
5
(y
2
+ y + 1)(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
(y
4
+ 2y
3
+ 3y
2
+ y + 1)
2
· ((y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
2
)(y
21
+ 8y
20
+ ··· + 145y 16)
c
3
, c
9
y
2
(y
4
5y
3
+ 7y
2
2y + 1)
2
(y
4
+ 2y
3
+ 3y
2
+ y + 1)
2
· ((y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
2
)(y
21
5y
20
+ ··· 4928y 1024)
c
6
, c
7
, c
8
c
10
, c
11
((y 1)
2
)(y + 1)
8
(y
8
+ 6y
7
+ ··· + 35y + 4)
· (y
12
+ 13y
11
+ ··· + 1092y + 289)(y
21
+ 26y
20
+ ··· + 10y 1)
c
12
((y 1)
10
)(y
8
18y
7
+ ··· 449y + 16)
· (y
12
19y
11
+ ··· 7564y + 83521)(y
21
66y
20
+ ··· + 126y 1)
26