10
151
(K10n
8
)
A knot diagram
1
Linearized knot diagam
8 10 2 7 4 10 5 1 7 3
Solving Sequence
3,10
1 2
4,7
6 5 9 8
c
10
c
2
c
3
c
6
c
5
c
9
c
8
c
1
, c
4
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= h−833147u
23
+ 1409387u
22
+ ··· + 10226089b 1216520,
4990546u
23
13216360u
22
+ ··· + 10226089a + 40011410, u
24
2u
23
+ ··· 3u + 1i
I
u
2
= hb, u
2
+ a + 2u 1, u
3
u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 27 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−8.33 × 10
5
u
23
+ 1.41 × 10
6
u
22
+ · · · + 1.02 × 10
7
b 1.22 × 10
6
, 4.99 ×
10
6
u
23
1.32×10
7
u
22
+· · ·+1.02×10
7
a+4.00×10
7
, u
24
2u
23
+· · · 3u +1i
(i) Arc colorings
a
3
=
0
u
a
10
=
1
0
a
1
=
1
u
2
a
2
=
u
u
a
4
=
u
3
u
3
+ u
a
7
=
0.488021u
23
+ 1.29242u
22
+ ··· + 5.71281u 3.91268
0.0814727u
23
0.137823u
22
+ ··· + 1.40274u + 0.118962
a
6
=
0.569494u
23
+ 1.43024u
22
+ ··· + 4.31007u 4.03164
0.0814727u
23
0.137823u
22
+ ··· + 1.40274u + 0.118962
a
5
=
0.0477684u
23
+ 0.550317u
22
+ ··· + 4.78103u 4.28575
0.244418u
23
+ 0.413468u
22
+ ··· + 0.791784u + 0.643113
a
9
=
1.22719u
23
2.03273u
22
+ ··· 1.49320u 0.914334
0.824903u
23
+ 1.42138u
22
+ ··· 1.76223u + 0.824685
a
8
=
1.83274u
23
2.23578u
22
+ ··· + 0.231291u 1.31738
1.42969u
23
+ 2.03524u
22
+ ··· 4.18083u + 1.83274
(ii) Obstruction class = 1
(iii) Cusp Shapes =
65252793
10226089
u
23
+
159009903
10226089
u
22
+ ··· +
182141648
10226089
u
68504184
10226089
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
24
+ 2u
23
+ ··· u 1
c
2
, c
10
u
24
+ 2u
23
+ ··· + 3u + 1
c
3
u
24
14u
23
+ ··· u + 1
c
4
, c
7
u
24
4u
23
+ ··· + 10u 1
c
5
u
24
+ 8u
23
+ ··· + 90u + 1
c
6
, c
9
u
24
+ 3u
23
+ ··· 4u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
24
+ 6y
23
+ ··· y + 1
c
2
, c
10
y
24
14y
23
+ ··· y + 1
c
3
y
24
6y
23
+ ··· + 11y + 1
c
4
, c
7
y
24
8y
23
+ ··· 90y + 1
c
5
y
24
+ 20y
23
+ ··· 6310y + 1
c
6
, c
9
y
24
21y
23
+ ··· 1360y + 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.133944 + 0.985428I
a = 0.133373 0.081418I
b = 1.35330 0.50270I
1.59272 6.31600I 2.35122 + 4.70660I
u = 0.133944 0.985428I
a = 0.133373 + 0.081418I
b = 1.35330 + 0.50270I
1.59272 + 6.31600I 2.35122 4.70660I
u = 1.032750 + 0.196704I
a = 1.025870 0.498775I
b = 0.009347 0.679382I
0.987314 0.802036I 5.27434 1.50428I
u = 1.032750 0.196704I
a = 1.025870 + 0.498775I
b = 0.009347 + 0.679382I
0.987314 + 0.802036I 5.27434 + 1.50428I
u = 1.020340 + 0.341153I
a = 0.651605 + 0.756937I
b = 0.08172 1.46525I
0.26071 + 4.16679I 3.46466 8.01442I
u = 1.020340 0.341153I
a = 0.651605 0.756937I
b = 0.08172 + 1.46525I
0.26071 4.16679I 3.46466 + 8.01442I
u = 0.902544
a = 4.79120
b = 0.343821
0.317600 45.9600
u = 0.141058 + 0.853854I
a = 0.089032 0.200554I
b = 1.319370 + 0.101644I
2.79538 0.43178I 4.38138 + 0.30823I
u = 0.141058 0.853854I
a = 0.089032 + 0.200554I
b = 1.319370 0.101644I
2.79538 + 0.43178I 4.38138 0.30823I
u = 0.752210 + 0.267079I
a = 1.94833 + 0.55932I
b = 1.117460 0.519931I
2.35229 + 1.42722I 1.68393 3.84628I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.752210 0.267079I
a = 1.94833 0.55932I
b = 1.117460 + 0.519931I
2.35229 1.42722I 1.68393 + 3.84628I
u = 0.880632 + 0.820126I
a = 0.090055 + 0.319503I
b = 0.608596 + 0.043662I
4.05969 + 3.04416I 8.04257 4.79385I
u = 0.880632 0.820126I
a = 0.090055 0.319503I
b = 0.608596 0.043662I
4.05969 3.04416I 8.04257 + 4.79385I
u = 1.261230 + 0.403008I
a = 1.87210 0.55612I
b = 1.74618 0.41138I
7.02540 + 4.75296I 7.35135 3.93540I
u = 1.261230 0.403008I
a = 1.87210 + 0.55612I
b = 1.74618 + 0.41138I
7.02540 4.75296I 7.35135 + 3.93540I
u = 1.226420 + 0.541913I
a = 1.26642 + 1.12148I
b = 1.45013 + 0.30367I
6.00062 4.69466I 6.29135 + 3.58966I
u = 1.226420 0.541913I
a = 1.26642 1.12148I
b = 1.45013 0.30367I
6.00062 + 4.69466I 6.29135 3.58966I
u = 0.651560
a = 0.544856
b = 0.332876
1.00318 10.1720
u = 1.333920 + 0.388157I
a = 1.36316 0.85334I
b = 1.45282 + 0.12914I
6.33160 + 1.53755I 6.60463 2.15708I
u = 1.333920 0.388157I
a = 1.36316 + 0.85334I
b = 1.45282 0.12914I
6.33160 1.53755I 6.60463 + 2.15708I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.275550 + 0.553583I
a = 1.75052 + 0.73489I
b = 1.54670 + 0.71042I
5.11209 + 11.84300I 4.87428 7.23803I
u = 1.275550 0.553583I
a = 1.75052 0.73489I
b = 1.54670 0.71042I
5.11209 11.84300I 4.87428 + 7.23803I
u = 0.187302 + 0.360950I
a = 2.01295 + 1.18210I
b = 0.347518 + 0.813420I
1.83004 1.07762I 2.51766 + 1.69232I
u = 0.187302 0.360950I
a = 2.01295 1.18210I
b = 0.347518 0.813420I
1.83004 + 1.07762I 2.51766 1.69232I
7
II. I
u
2
= hb, u
2
+ a + 2u 1, u
3
u
2
+ 1i
(i) Arc colorings
a
3
=
0
u
a
10
=
1
0
a
1
=
1
u
2
a
2
=
u
u
a
4
=
u
2
1
u
2
+ u + 1
a
7
=
u
2
2u + 1
0
a
6
=
u
2
2u + 1
0
a
5
=
2u
2
2u
u
2
+ u + 1
a
9
=
1
0
a
8
=
u
2
+ 1
u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
4
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
3
u
2
+ 2u 1
c
2
u
3
+ u
2
1
c
4
(u 1)
3
c
5
, c
7
(u + 1)
3
c
6
, c
9
u
3
c
8
u
3
+ u
2
+ 2u + 1
c
10
u
3
u
2
+ 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
8
y
3
+ 3y
2
+ 2y 1
c
2
, c
10
y
3
y
2
+ 2y 1
c
4
, c
5
, c
7
(y 1)
3
c
6
, c
9
y
3
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.539798 0.182582I
b = 0
4.66906 + 2.82812I 4.21508 1.30714I
u = 0.877439 0.744862I
a = 0.539798 + 0.182582I
b = 0
4.66906 2.82812I 4.21508 + 1.30714I
u = 0.754878
a = 3.07960
b = 0
0.531480 4.56980
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
3
u
2
+ 2u 1)(u
24
+ 2u
23
+ ··· u 1)
c
2
(u
3
+ u
2
1)(u
24
+ 2u
23
+ ··· + 3u + 1)
c
3
(u
3
u
2
+ 2u 1)(u
24
14u
23
+ ··· u + 1)
c
4
((u 1)
3
)(u
24
4u
23
+ ··· + 10u 1)
c
5
((u + 1)
3
)(u
24
+ 8u
23
+ ··· + 90u + 1)
c
6
, c
9
u
3
(u
24
+ 3u
23
+ ··· 4u + 8)
c
7
((u + 1)
3
)(u
24
4u
23
+ ··· + 10u 1)
c
8
(u
3
+ u
2
+ 2u + 1)(u
24
+ 2u
23
+ ··· u 1)
c
10
(u
3
u
2
+ 1)(u
24
+ 2u
23
+ ··· + 3u + 1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y
3
+ 3y
2
+ 2y 1)(y
24
+ 6y
23
+ ··· y + 1)
c
2
, c
10
(y
3
y
2
+ 2y 1)(y
24
14y
23
+ ··· y + 1)
c
3
(y
3
+ 3y
2
+ 2y 1)(y
24
6y
23
+ ··· + 11y + 1)
c
4
, c
7
((y 1)
3
)(y
24
8y
23
+ ··· 90y + 1)
c
5
((y 1)
3
)(y
24
+ 20y
23
+ ··· 6310y + 1)
c
6
, c
9
y
3
(y
24
21y
23
+ ··· 1360y + 64)
13