12n
0275
(K12n
0275
)
A knot diagram
1
Linearized knot diagam
3 4 8 2 9 4 11 6 3 12 7 10
Solving Sequence
7,11 3,8
4 12 2 5 6 10 1 9
c
7
c
3
c
11
c
2
c
4
c
6
c
10
c
12
c
9
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−28980693473u
29
23872677880u
28
+ ··· + 214600733306b 182162526839,
563591323347u
29
+ 759883303462u
28
+ ··· + 214600733306a 449269653153,
u
30
u
29
+ ··· + 3u + 1i
I
u
2
= h−u
5
a 2u
5
u
3
a u
2
a u
3
au u
2
+ 2b 2u 1,
u
5
a + u
4
a + 3u
5
+ u
4
+ u
2
a + u
3
+ a
2
+ u
2
+ 2a + 6u + 1, u
6
+ u
4
+ 2u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 42 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−2.90×10
10
u
29
2.39×10
10
u
28
+· · ·+2.15×10
11
b1.82×10
11
, 5.64×
10
11
u
29
+7.60×10
11
u
28
+· · ·+2.15×10
11
a4.49×10
11
, u
30
u
29
+· · ·+3u+1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
3
=
2.62623u
29
3.54092u
28
+ ··· + 12.0914u + 2.09351
0.135045u
29
+ 0.111242u
28
+ ··· + 0.745217u + 0.848844
a
8
=
1
u
2
a
4
=
2.84774u
29
3.81213u
28
+ ··· + 12.7188u + 2.02767
0.0194466u
29
+ 0.399642u
28
+ ··· + 0.672837u + 0.898553
a
12
=
u
u
a
2
=
1.18157u
29
2.05139u
28
+ ··· + 1.94907u + 0.834389
0.135455u
29
0.0144421u
28
+ ··· 1.18940u 1.25661
a
5
=
1.09680u
29
0.576198u
28
+ ··· + 6.48933u + 4.12117
0.313730u
29
+ 0.598271u
28
+ ··· 1.65860u 0.520599
a
6
=
0.947509u
29
+ 0.761849u
28
+ ··· 8.67784u 0.427524
0.0270939u
29
0.328296u
28
+ ··· + 0.399856u 1.39992
a
10
=
u
3
u
3
+ u
a
1
=
u
5
u
u
5
+ u
3
+ u
a
9
=
1.54614u
29
2.33858u
28
+ ··· + 6.58387u + 1.61709
0.255461u
29
+ 0.288919u
28
+ ··· 1.75987u 0.674753
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
116649735226
107300366653
u
29
+
148588842691
107300366653
u
28
+ ···
788548417729
107300366653
u +
226312667156
107300366653
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
30
+ 47u
29
+ ··· + 191u + 1
c
2
, c
4
u
30
5u
29
+ ··· + 11u + 1
c
3
u
30
u
29
+ ··· + 3u + 1
c
5
, c
8
u
30
u
29
+ ··· 95u + 25
c
6
u
30
+ 3u
29
+ ··· + 861u + 649
c
7
, c
11
u
30
+ u
29
+ ··· 3u + 1
c
9
u
30
+ 3u
29
+ ··· 401099u + 75377
c
10
, c
12
u
30
5u
29
+ ··· 9u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
30
121y
29
+ ··· + 51727y + 1
c
2
, c
4
y
30
+ 47y
29
+ ··· + 191y + 1
c
3
y
30
5y
29
+ ··· + 11y + 1
c
5
, c
8
y
30
+ y
29
+ ··· 3175y + 625
c
6
y
30
+ 33y
29
+ ··· + 2246675y + 421201
c
7
, c
11
y
30
+ 5y
29
+ ··· + 9y + 1
c
9
y
30
+ 89y
29
+ ··· + 64272198739y + 5681692129
c
10
, c
12
y
30
+ 45y
29
+ ··· + 81y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.194178 + 0.861301I
a = 1.021630 0.362095I
b = 0.263501 + 0.422304I
0.69640 1.72034I 1.49037 + 4.91074I
u = 0.194178 0.861301I
a = 1.021630 + 0.362095I
b = 0.263501 0.422304I
0.69640 + 1.72034I 1.49037 4.91074I
u = 0.938260 + 0.627104I
a = 0.499497 + 0.926953I
b = 1.52482 + 0.04891I
6.16879 1.21008I 2.96584 + 0.88236I
u = 0.938260 0.627104I
a = 0.499497 0.926953I
b = 1.52482 0.04891I
6.16879 + 1.21008I 2.96584 0.88236I
u = 0.423018 + 0.756823I
a = 1.89502 0.68357I
b = 0.189341 0.657186I
2.22190 + 4.31885I 5.85919 8.87008I
u = 0.423018 0.756823I
a = 1.89502 + 0.68357I
b = 0.189341 + 0.657186I
2.22190 4.31885I 5.85919 + 8.87008I
u = 0.149957 + 0.853854I
a = 0.90254 1.96897I
b = 0.496999 + 0.995959I
3.54151 0.51606I 10.41425 1.32912I
u = 0.149957 0.853854I
a = 0.90254 + 1.96897I
b = 0.496999 0.995959I
3.54151 + 0.51606I 10.41425 + 1.32912I
u = 0.765379 + 0.893759I
a = 0.159784 + 1.137040I
b = 1.46119 0.25226I
1.42212 2.89990I 2.16966 + 2.50499I
u = 0.765379 0.893759I
a = 0.159784 1.137040I
b = 1.46119 + 0.25226I
1.42212 + 2.89990I 2.16966 2.50499I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.882441 + 0.785868I
a = 0.28444 + 1.44916I
b = 0.835514 + 0.010950I
4.43991 4.87528I 1.40537 + 4.69553I
u = 0.882441 0.785868I
a = 0.28444 1.44916I
b = 0.835514 0.010950I
4.43991 + 4.87528I 1.40537 4.69553I
u = 0.633178 + 0.448369I
a = 0.204887 0.469950I
b = 0.234278 + 0.488949I
0.96186 1.37588I 2.99068 + 3.21474I
u = 0.633178 0.448369I
a = 0.204887 + 0.469950I
b = 0.234278 0.488949I
0.96186 + 1.37588I 2.99068 3.21474I
u = 0.736913 + 0.984710I
a = 0.273772 + 0.001505I
b = 1.135180 0.258754I
3.71029 1.15996I 1.23536 + 0.81989I
u = 0.736913 0.984710I
a = 0.273772 0.001505I
b = 1.135180 + 0.258754I
3.71029 + 1.15996I 1.23536 0.81989I
u = 0.647311 + 1.068760I
a = 0.99194 + 1.30440I
b = 1.71967 0.46050I
4.58052 + 7.07309I 0.56937 6.52418I
u = 0.647311 1.068760I
a = 0.99194 1.30440I
b = 1.71967 + 0.46050I
4.58052 7.07309I 0.56937 + 6.52418I
u = 1.022110 + 0.895164I
a = 0.555012 0.809078I
b = 2.44769 0.22730I
16.7193 + 4.9302I 0.87414 1.79412I
u = 1.022110 0.895164I
a = 0.555012 + 0.809078I
b = 2.44769 + 0.22730I
16.7193 4.9302I 0.87414 + 1.79412I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.919420 + 1.045210I
a = 0.57144 1.81078I
b = 2.49834 + 0.28520I
16.2013 12.0291I 0.14700 + 6.09920I
u = 0.919420 1.045210I
a = 0.57144 + 1.81078I
b = 2.49834 0.28520I
16.2013 + 12.0291I 0.14700 6.09920I
u = 1.011130 + 0.959398I
a = 0.19777 1.52281I
b = 1.98241 + 0.56395I
17.2554 + 2.6942I 1.35658 2.19435I
u = 1.011130 0.959398I
a = 0.19777 + 1.52281I
b = 1.98241 0.56395I
17.2554 2.6942I 1.35658 + 2.19435I
u = 0.968194 + 1.019150I
a = 0.859717 0.564264I
b = 2.08559 0.52091I
17.0465 + 4.5510I 1.15103 1.97489I
u = 0.968194 1.019150I
a = 0.859717 + 0.564264I
b = 2.08559 + 0.52091I
17.0465 4.5510I 1.15103 + 1.97489I
u = 0.213905 + 0.490541I
a = 1.65502 + 0.37124I
b = 0.548040 + 0.708878I
1.59074 1.61799I 1.307109 0.397413I
u = 0.213905 0.490541I
a = 1.65502 0.37124I
b = 0.548040 0.708878I
1.59074 + 1.61799I 1.307109 + 0.397413I
u = 0.301843 + 0.271696I
a = 2.42638 + 1.75700I
b = 0.454022 0.958650I
1.49855 + 2.22404I 0.54522 4.55103I
u = 0.301843 0.271696I
a = 2.42638 1.75700I
b = 0.454022 + 0.958650I
1.49855 2.22404I 0.54522 + 4.55103I
7
II.
I
u
2
= h−u
5
a 2u
5
+ · · · + 2b 1, u
5
a + 3u
5
+ · · · + 2a + 1, u
6
+ u
4
+ 2u
2
+ 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
3
=
a
1
2
u
5
a + u
5
+ ··· + u +
1
2
a
8
=
1
u
2
a
4
=
1
2
u
5
a + u
5
+ ··· + a +
1
2
1
2
u
5
a +
1
2
u
5
+ ··· + u
2
+
1
2
a
12
=
u
u
a
2
=
2u
5
1
2
u
4
+ ··· +
1
2
a 2
1
2
u
4
a +
3
2
u
5
+ ··· + 2u + 1
a
5
=
u
5
+ u
u
5
u
3
u
a
6
=
1
2
u
5
a +
7
2
u
5
+ ··· +
1
2
a +
5
2
u
5
a
3
2
u
5
+ ··· +
1
2
a
5
2
u
a
10
=
u
3
u
3
+ u
a
1
=
u
5
u
u
5
+ u
3
+ u
a
9
=
3
2
u
5
a +
1
2
u
5
+ ··· +
1
2
a
3
2
u
5
a
5
2
u
5
+ ··· +
1
2
a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
5
a 2u
3
a + 4u
4
2u
2
a + 2u
3
2au + 2u
2
+ 10
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
2
u + 1)
6
c
2
(u
2
+ u + 1)
6
c
3
(u
4
u
2
+ 1)
3
c
5
, c
8
(u
2
+ 1)
6
c
6
u
12
6u
11
+ ··· + 2u + 1
c
7
, c
11
(u
6
+ u
4
+ 2u
2
+ 1)
2
c
9
u
12
+ 2u
11
+ ··· + 4u + 1
c
10
(u
3
+ u
2
+ 2u + 1)
4
c
12
(u
3
u
2
+ 2u 1)
4
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y
2
+ y + 1)
6
c
3
(y
2
y + 1)
6
c
5
, c
8
(y + 1)
12
c
6
y
12
+ 12y
11
+ ··· + 6y + 1
c
7
, c
11
(y
3
+ y
2
+ 2y + 1)
4
c
9
y
12
12y
11
+ ··· 6y + 1
c
10
, c
12
(y
3
+ 3y
2
+ 2y 1)
4
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.744862 + 0.877439I
a = 0.850078 0.184922I
b = 0.807141 + 0.650946I
1.37919 0.79824I 2.49024 0.48465I
u = 0.744862 + 0.877439I
a = 0.227778 + 1.317500I
b = 0.807141 1.081110I
1.37919 4.85801I 2.49024 + 6.44355I
u = 0.744862 0.877439I
a = 0.850078 + 0.184922I
b = 0.807141 0.650946I
1.37919 + 0.79824I 2.49024 + 0.48465I
u = 0.744862 0.877439I
a = 0.227778 1.317500I
b = 0.807141 + 1.081110I
1.37919 + 4.85801I 2.49024 6.44355I
u = 0.744862 + 0.877439I
a = 0.317499 + 0.772222I
b = 1.80714 1.08111I
1.37919 + 0.79824I 2.49024 + 0.48465I
u = 0.744862 + 0.877439I
a = 1.18492 + 1.85008I
b = 1.80714 + 0.65095I
1.37919 + 4.85801I 2.49024 6.44355I
u = 0.744862 0.877439I
a = 0.317499 0.772222I
b = 1.80714 + 1.08111I
1.37919 0.79824I 2.49024 0.48465I
u = 0.744862 0.877439I
a = 1.18492 1.85008I
b = 1.80714 0.65095I
1.37919 4.85801I 2.49024 + 6.44355I
u = 0.754878I
a = 0.64233 1.64233I
b = 0.50000 + 1.43587I
2.75839 + 2.02988I 9.01951 3.46410I
u = 0.754878I
a = 2.39721 + 1.39721I
b = 0.500000 0.296185I
2.75839 2.02988I 9.01951 + 3.46410I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.754878I
a = 0.64233 + 1.64233I
b = 0.50000 1.43587I
2.75839 2.02988I 9.01951 + 3.46410I
u = 0.754878I
a = 2.39721 1.39721I
b = 0.500000 + 0.296185I
2.75839 + 2.02988I 9.01951 3.46410I
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
6
)(u
30
+ 47u
29
+ ··· + 191u + 1)
c
2
((u
2
+ u + 1)
6
)(u
30
5u
29
+ ··· + 11u + 1)
c
3
((u
4
u
2
+ 1)
3
)(u
30
u
29
+ ··· + 3u + 1)
c
4
((u
2
u + 1)
6
)(u
30
5u
29
+ ··· + 11u + 1)
c
5
, c
8
((u
2
+ 1)
6
)(u
30
u
29
+ ··· 95u + 25)
c
6
(u
12
6u
11
+ ··· + 2u + 1)(u
30
+ 3u
29
+ ··· + 861u + 649)
c
7
, c
11
((u
6
+ u
4
+ 2u
2
+ 1)
2
)(u
30
+ u
29
+ ··· 3u + 1)
c
9
(u
12
+ 2u
11
+ ··· + 4u + 1)(u
30
+ 3u
29
+ ··· 401099u + 75377)
c
10
((u
3
+ u
2
+ 2u + 1)
4
)(u
30
5u
29
+ ··· 9u + 1)
c
12
((u
3
u
2
+ 2u 1)
4
)(u
30
5u
29
+ ··· 9u + 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
6
)(y
30
121y
29
+ ··· + 51727y + 1)
c
2
, c
4
((y
2
+ y + 1)
6
)(y
30
+ 47y
29
+ ··· + 191y + 1)
c
3
((y
2
y + 1)
6
)(y
30
5y
29
+ ··· + 11y + 1)
c
5
, c
8
((y + 1)
12
)(y
30
+ y
29
+ ··· 3175y + 625)
c
6
(y
12
+ 12y
11
+ ··· + 6y + 1)(y
30
+ 33y
29
+ ··· + 2246675y + 421201)
c
7
, c
11
((y
3
+ y
2
+ 2y + 1)
4
)(y
30
+ 5y
29
+ ··· + 9y + 1)
c
9
(y
12
12y
11
+ ··· 6y + 1)
· (y
30
+ 89y
29
+ ··· + 64272198739y + 5681692129)
c
10
, c
12
((y
3
+ 3y
2
+ 2y 1)
4
)(y
30
+ 45y
29
+ ··· + 81y + 1)
14