12n
0276
(K12n
0276
)
A knot diagram
1
Linearized knot diagam
3 4 8 2 9 4 12 10 6 3 7 11
Solving Sequence
7,12 3,8
4 2 5 6 11 1 10 9
c
7
c
3
c
2
c
4
c
6
c
11
c
12
c
10
c
9
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
3
u
2
+ b + u + 1, u
2
+ a u, u
4
+ 2u
3
+ u
2
2u 1i
I
u
2
= hu
3
u
2
+ b u + 1, 2u
3
+ u
2
+ a + u, u
4
u
2
+ 1i
I
u
3
= h2u
7
3u
6
+ 3u
5
+ 3u
3
+ 2u
2
+ 2b 3u 1, 3u
7
+ 4u
6
3u
5
3u
4
3u
3
3u
2
+ 2a + 4u + 3,
u
8
2u
7
+ 2u
6
+ u
4
2u
2
+ 1i
I
u
4
= h2u
7
3u
6
+ 3u
5
+ 3u
3
+ 2u
2
+ 2b 3u 1, u
7
+ u
6
2u
5
+ u
4
4u
3
u
2
+ 2a u,
u
8
2u
7
+ 2u
6
+ u
4
2u
2
+ 1i
I
u
5
= hu
7
+ u
6
+ 2u
5
+ u
4
+ 2u
3
+ 3u
2
+ 4b + 5u + 6, u
7
+ 3u
6
+ 2u
5
+ 3u
4
10u
3
+ 5u
2
+ 8a + 11u + 10,
u
8
+ 3u
7
+ 4u
6
+ u
5
+ 7u
3
+ 15u
2
+ 12u + 4i
I
u
6
= hu
3
+ b u 1, u
2
+ a + 1, u
4
u
2
+ 1i
I
u
7
= hu
3
+ b u 1, 2u
3
u
2
+ a + u + 1, u
4
u
2
+ 1i
I
u
8
= hu
3
+ u
2
+ b u, a 1, u
4
u
2
+ 1i
* 8 irreducible components of dim
C
= 0, with total 44 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−u
3
u
2
+ b + u + 1, u
2
+ a u, u
4
+ 2u
3
+ u
2
2u 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
3
=
u
2
+ u
u
3
+ u
2
u 1
a
8
=
1
u
2
a
4
=
u
2
+ 2u
u
2
u 1
a
2
=
2u
2
u 1
4u
3
+ 3u
2
3u 2
a
5
=
5u
3
+ 4u
2
2u 2
3u
3
10u
2
+ 5u + 4
a
6
=
u
3
4u
2
+ 2
4u
3
2u
2
+ 4u + 2
a
11
=
u
u
a
1
=
u
3
u
3
+ u
a
10
=
2u
3
3u
2
+ 1
3u
2
1
a
9
=
4u
2
+ 2
6u
3
5u
2
+ 6u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u + 16
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
+ 10u
3
+ 27u
2
22u + 1
c
2
, c
4
, c
8
c
12
u
4
2u
3
+ 7u
2
6u + 1
c
3
, c
5
, c
7
c
9
, c
11
u
4
2u
3
+ u
2
+ 2u 1
c
6
, c
10
u
4
+ 10u
2
16u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
4
46y
3
+ 1171y
2
430y + 1
c
2
, c
4
, c
8
c
12
y
4
+ 10y
3
+ 27y
2
22y + 1
c
3
, c
5
, c
7
c
9
, c
11
y
4
2y
3
+ 7y
2
6y + 1
c
6
, c
10
y
4
+ 20y
3
+ 108y
2
176y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.883204
a = 1.66325
b = 0.414214
4.18641 21.2990
u = 0.468990
a = 0.249038
b = 0.414214
0.748389 13.1860
u = 1.20711 + 0.97832I
a = 0.70711 1.38355I
b = 2.41421
17.2718 12.3509I 8.75736 + 5.86991I
u = 1.20711 0.97832I
a = 0.70711 + 1.38355I
b = 2.41421
17.2718 + 12.3509I 8.75736 5.86991I
5
II. I
u
2
= hu
3
u
2
+ b u + 1, 2u
3
+ u
2
+ a + u, u
4
u
2
+ 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
3
=
2u
3
u
2
u
u
3
+ u
2
+ u 1
a
8
=
1
u
2
a
4
=
2u
3
u
2
2u
u
2
+ u 1
a
2
=
2u
3
+ u 1
2u
3
+ u
2
+ u
a
5
=
u
3
u
3
u
a
6
=
3u
3
2u
3
2u
a
11
=
u
u
a
1
=
u
3
u
3
+ u
a
10
=
u
2
3
u
2
+ 1
a
9
=
2u
2
u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u
2
+ 16
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
12
(u
2
u + 1)
2
c
2
, c
8
(u
2
+ u + 1)
2
c
3
, c
5
, c
7
c
9
, c
11
u
4
u
2
+ 1
c
6
u
4
+ 2u
3
+ 2u
2
+ 4u + 4
c
10
u
4
2u
3
+ 2u
2
4u + 4
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
8
, c
12
(y
2
+ y + 1)
2
c
3
, c
5
, c
7
c
9
, c
11
(y
2
y + 1)
2
c
6
, c
10
y
4
4y
2
+ 16
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 1.36603 + 0.63397I
b = 0.366025 + 0.366025I
6.08965I 10.0000 10.3923I
u = 0.866025 0.500000I
a = 1.36603 0.63397I
b = 0.366025 0.366025I
6.08965I 10.0000 + 10.3923I
u = 0.866025 + 0.500000I
a = 0.36603 + 2.36603I
b = 1.36603 1.36603I
6.08965I 10.0000 + 10.3923I
u = 0.866025 0.500000I
a = 0.36603 2.36603I
b = 1.36603 + 1.36603I
6.08965I 10.0000 10.3923I
9
III. I
u
3
= h2u
7
3u
6
+ 3u
5
+ 3u
3
+ 2u
2
+ 2b 3u 1, 3u
7
+ 4u
6
+ · · · +
2a + 3, u
8
2u
7
+ 2u
6
+ u
4
2u
2
+ 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
3
=
3
2
u
7
2u
6
+ ··· 2u
3
2
u
7
+
3
2
u
6
+ ··· +
3
2
u +
1
2
a
8
=
1
u
2
a
4
=
u
7
u
6
+ 2u
4
+ u
3
+ u
2
2u 2
1
2
u
7
+ u
6
+ ··· + u +
1
2
a
2
=
2u
7
5
2
u
6
+ ···
1
2
u
3
2
u
7
+
1
2
u
6
+ ··· +
3
2
u +
1
2
a
5
=
2u
7
+ 3u
6
2u
5
2u
4
3u
3
+ 2u + 1
2u
5
u
4
+ u
3
+ u
2
u 1
a
6
=
3
2
u
7
2u
6
+ ··· 2u
1
2
1
2
u
7
+
1
2
u
6
+ ··· +
1
2
u + 1
a
11
=
u
u
a
1
=
u
3
u
3
+ u
a
10
=
3
2
u
7
2u
6
+ ··· 2u
3
2
1
2
u
7
+
1
2
u
6
+ ··· +
3
2
u + 1
a
9
=
1
2
u
7
1
2
u
6
+ ··· +
1
2
u
2
3
2
u
1
2
u
6
1
2
u
5
+ ··· +
1
2
u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
+ 4u
6
2u
5
4u
4
8u
3
4u
2
+ 6u + 16
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
+ 19u
7
+ ··· + 1248u + 256
c
2
, c
4
u
8
u
7
+ 10u
6
13u
5
+ 42u
4
41u
3
+ 57u
2
24u + 16
c
3
u
8
3u
7
+ 4u
6
u
5
7u
3
+ 15u
2
12u + 4
c
5
, c
7
, c
9
c
11
u
8
+ 2u
7
+ 2u
6
+ u
4
2u
2
+ 1
c
6
, c
10
u
8
+ 7u
7
+ 25u
6
+ 52u
5
+ 54u
4
+ 16u
3
8u
2
+ 4
c
8
, c
12
u
8
+ 6u
6
5u
4
+ 6u
2
4u + 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
45y
7
+ ··· 213504y + 65536
c
2
, c
4
y
8
+ 19y
7
+ ··· + 1248y + 256
c
3
y
8
y
7
+ 10y
6
13y
5
+ 42y
4
41y
3
+ 57y
2
24y + 16
c
5
, c
7
, c
9
c
11
y
8
+ 6y
6
5y
4
+ 6y
2
4y + 1
c
6
, c
10
y
8
+ y
7
+ 5y
6
244y
5
+ 860y
4
920y
3
+ 496y
2
64y + 16
c
8
, c
12
y
8
+ 12y
7
+ 26y
6
48y
5
+ 99y
4
48y
3
+ 26y
2
4y + 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.273242 + 1.017440I
a = 0.038323 + 1.295230I
b = 0.307345 + 0.392902I
3.00645 3.35673I 6.09240 + 3.01308I
u = 0.273242 1.017440I
a = 0.038323 1.295230I
b = 0.307345 0.392902I
3.00645 + 3.35673I 6.09240 3.01308I
u = 0.796321 + 0.241667I
a = 1.41328 + 1.73710I
b = 0.545221 1.041750I
1.17763 + 4.62470I 15.0023 5.8935I
u = 0.796321 0.241667I
a = 1.41328 1.73710I
b = 0.545221 + 1.041750I
1.17763 4.62470I 15.0023 + 5.8935I
u = 0.666028 + 0.230992I
a = 0.439021 0.264857I
b = 0.768780 0.277812I
0.403528 0.080080I 11.24335 + 0.17507I
u = 0.666028 0.230992I
a = 0.439021 + 0.264857I
b = 0.768780 + 0.277812I
0.403528 + 0.080080I 11.24335 0.17507I
u = 1.14295 + 1.14532I
a = 0.512578 0.434756I
b = 2.08379 0.09016I
18.3139 + 4.2344I 7.66195 1.86062I
u = 1.14295 1.14532I
a = 0.512578 + 0.434756I
b = 2.08379 + 0.09016I
18.3139 4.2344I 7.66195 + 1.86062I
13
IV. I
u
4
= h2u
7
3u
6
+ 3u
5
+ 3u
3
+ 2u
2
+ 2b 3u 1, u
7
+ u
6
2u
5
+ u
4
4u
3
u
2
+ 2a u, u
8
2u
7
+ 2u
6
+ u
4
2u
2
+ 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
3
=
1
2
u
7
1
2
u
6
+ ··· +
1
2
u
2
+
1
2
u
u
7
+
3
2
u
6
+ ··· +
3
2
u +
1
2
a
8
=
1
u
2
a
4
=
1
2
u
7
1
2
u
6
+ ··· +
1
2
u
2
+
3
2
u
u
7
+
3
2
u
6
+ ··· +
3
2
u +
1
2
a
2
=
1
2
u
7
+ u
6
+ ··· + u +
1
2
1
2
u
7
+
1
2
u
6
+ ···
1
2
u
2
+
1
2
u
a
5
=
u
5
+ 2u
3
+ u
u
7
u
5
2u
3
+ u
a
6
=
2u
7
+
5
2
u
6
+ ··· +
5
2
u +
9
2
1
2
u
6
+
3
2
u
5
+ ···
3
2
u
1
2
a
11
=
u
u
a
1
=
u
3
u
3
+ u
a
10
=
3
2
u
7
+ 2u
6
+ ···
3
2
u
2
+
1
2
u
7
u
6
+ u
5
+ u
4
+ u
3
+ u
2
u 1
a
9
=
5
2
u
7
+ 3u
6
+ ··· + 3u +
9
2
1
2
u
6
+
1
2
u
5
+ ···
3
2
u
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
+ 4u
6
2u
5
4u
4
8u
3
4u
2
+ 6u + 16
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
+ 12u
7
+ 26u
6
48u
5
+ 99u
4
48u
3
+ 26u
2
4u + 1
c
2
, c
4
, c
12
u
8
+ 6u
6
5u
4
+ 6u
2
4u + 1
c
3
, c
7
, c
11
u
8
+ 2u
7
+ 2u
6
+ u
4
2u
2
+ 1
c
5
, c
9
u
8
3u
7
+ 4u
6
u
5
7u
3
+ 15u
2
12u + 4
c
6
u
8
+ 12u
6
16u
5
+ 49u
4
56u
3
+ 78u
2
54u + 27
c
8
u
8
u
7
+ 10u
6
13u
5
+ 42u
4
41u
3
+ 57u
2
24u + 16
c
10
u
8
4u
7
+ 18u
6
58u
5
+ 111u
4
126u
3
+ 92u
2
40u + 11
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
92y
7
+ ··· + 36y + 1
c
2
, c
4
, c
12
y
8
+ 12y
7
+ 26y
6
48y
5
+ 99y
4
48y
3
+ 26y
2
4y + 1
c
3
, c
7
, c
11
y
8
+ 6y
6
5y
4
+ 6y
2
4y + 1
c
5
, c
9
y
8
y
7
+ 10y
6
13y
5
+ 42y
4
41y
3
+ 57y
2
24y + 16
c
6
y
8
+ 24y
7
+ ··· + 1296y + 729
c
8
y
8
+ 19y
7
+ ··· + 1248y + 256
c
10
y
8
+ 20y
7
+ 82y
6
192y
5
+ 719y
4
+ 304y
3
+ 826y
2
+ 424y + 121
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.273242 + 1.017440I
a = 0.170826 0.749091I
b = 0.307345 + 0.392902I
3.00645 3.35673I 6.09240 + 3.01308I
u = 0.273242 1.017440I
a = 0.170826 + 0.749091I
b = 0.307345 0.392902I
3.00645 + 3.35673I 6.09240 3.01308I
u = 0.796321 + 0.241667I
a = 1.33140 + 1.33913I
b = 0.545221 1.041750I
1.17763 + 4.62470I 15.0023 5.8935I
u = 0.796321 0.241667I
a = 1.33140 1.33913I
b = 0.545221 + 1.041750I
1.17763 4.62470I 15.0023 + 5.8935I
u = 0.666028 + 0.230992I
a = 0.471568 + 0.932013I
b = 0.768780 0.277812I
0.403528 0.080080I 11.24335 + 0.17507I
u = 0.666028 0.230992I
a = 0.471568 0.932013I
b = 0.768780 + 0.277812I
0.403528 + 0.080080I 11.24335 0.17507I
u = 1.14295 + 1.14532I
a = 0.469343 1.233450I
b = 2.08379 0.09016I
18.3139 + 4.2344I 7.66195 1.86062I
u = 1.14295 1.14532I
a = 0.469343 + 1.233450I
b = 2.08379 + 0.09016I
18.3139 4.2344I 7.66195 + 1.86062I
17
V. I
u
5
= hu
7
+ u
6
+ 2u
5
+ u
4
+ 2u
3
+ 3u
2
+ 4b + 5u + 6, u
7
+ 3u
6
+ · · · +
8a + 10, u
8
+ 3u
7
+ 4u
6
+ u
5
+ 7u
3
+ 15u
2
+ 12u + 4i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
3
=
1
8
u
7
3
8
u
6
+ ···
11
8
u
5
4
1
4
u
7
1
4
u
6
+ ···
5
4
u
3
2
a
8
=
1
u
2
a
4
=
11
8
u
7
+
15
8
u
6
+ ··· +
47
8
u +
1
4
5
4
u
7
13
4
u
6
+ ···
57
4
u
15
2
a
2
=
9
8
u
7
17
8
u
6
+ ···
57
8
u
9
4
5
4
u
7
+
17
4
u
6
+ ··· +
65
4
u +
13
2
a
5
=
u
7
+ u
6
+ u
5
u
4
+ 2u
3
+ 5u
2
+ 4u
3u
7
6u
6
3u
5
+ 2u
4
4u
3
18u
2
19u 8
a
6
=
17
8
u
7
25
8
u
6
+ ···
81
8
u
1
4
11
4
u
7
+
23
4
u
6
+ ··· +
99
4
u +
23
2
a
11
=
u
u
a
1
=
u
3
u
3
+ u
a
10
=
2.37500u
7
5.37500u
6
+ ··· 21.3750u 8.75000
1
4
u
7
+
3
4
u
6
+ ··· +
19
4
u +
7
2
a
9
=
11
8
u
7
23
8
u
6
+ ···
87
8
u
13
4
1
4
u
7
+
9
4
u
6
+ ··· +
29
4
u +
7
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
6
4u
5
2u
4
+ 6u
3
10u
2
20u 2
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
+ 12u
7
+ 26u
6
48u
5
+ 99u
4
48u
3
+ 26u
2
4u + 1
c
2
, c
4
, c
8
u
8
+ 6u
6
5u
4
+ 6u
2
4u + 1
c
3
, c
5
, c
9
u
8
+ 2u
7
+ 2u
6
+ u
4
2u
2
+ 1
c
6
u
8
4u
7
+ 18u
6
58u
5
+ 111u
4
126u
3
+ 92u
2
40u + 11
c
7
, c
11
u
8
3u
7
+ 4u
6
u
5
7u
3
+ 15u
2
12u + 4
c
10
u
8
+ 12u
6
16u
5
+ 49u
4
56u
3
+ 78u
2
54u + 27
c
12
u
8
u
7
+ 10u
6
13u
5
+ 42u
4
41u
3
+ 57u
2
24u + 16
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
92y
7
+ ··· + 36y + 1
c
2
, c
4
, c
8
y
8
+ 12y
7
+ 26y
6
48y
5
+ 99y
4
48y
3
+ 26y
2
4y + 1
c
3
, c
5
, c
9
y
8
+ 6y
6
5y
4
+ 6y
2
4y + 1
c
6
y
8
+ 20y
7
+ 82y
6
192y
5
+ 719y
4
+ 304y
3
+ 826y
2
+ 424y + 121
c
7
, c
11
y
8
y
7
+ 10y
6
13y
5
+ 42y
4
41y
3
+ 57y
2
24y + 16
c
10
y
8
+ 24y
7
+ ··· + 1296y + 729
c
12
y
8
+ 19y
7
+ ··· + 1248y + 256
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.937027 + 0.585611I
a = 0.68623 + 1.54063I
b = 1.261650 0.312913I
1.17763 4.62470I 15.0023 + 5.8935I
u = 0.937027 0.585611I
a = 0.68623 1.54063I
b = 1.261650 + 0.312913I
1.17763 + 4.62470I 15.0023 5.8935I
u = 0.678952 + 0.516253I
a = 0.018648 + 0.423357I
b = 0.966437 0.300245I
0.403528 + 0.080080I 11.24335 0.17507I
u = 0.678952 0.516253I
a = 0.018648 0.423357I
b = 0.966437 + 0.300245I
0.403528 0.080080I 11.24335 + 0.17507I
u = 1.064320 + 0.829887I
a = 0.584890 + 0.825215I
b = 1.44426 0.35067I
3.00645 + 3.35673I 6.09240 3.01308I
u = 1.064320 0.829887I
a = 0.584890 0.825215I
b = 1.44426 + 0.35067I
3.00645 3.35673I 6.09240 + 3.01308I
u = 0.94834 + 1.25418I
a = 0.369985 0.584379I
b = 2.28383 0.12843I
18.3139 + 4.2344I 7.66195 1.86062I
u = 0.94834 1.25418I
a = 0.369985 + 0.584379I
b = 2.28383 + 0.12843I
18.3139 4.2344I 7.66195 + 1.86062I
21
VI. I
u
6
= hu
3
+ b u 1, u
2
+ a + 1, u
4
u
2
+ 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
3
=
u
2
1
u
3
+ u + 1
a
8
=
1
u
2
a
4
=
u
3
+ u
2
+ u 1
u
3
+ 1
a
2
=
u
3
1
u
3
+ u
2
+ 2u
a
5
=
u
3
u
3
u
a
6
=
u
3
+ 2u
2u
3
a
11
=
u
u
a
1
=
u
3
u
3
+ u
a
10
=
u
2
+ 1
u
2
1
a
9
=
2
3u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 12
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
12
(u
2
u + 1)
2
c
2
, c
8
(u
2
+ u + 1)
2
c
3
, c
5
, c
7
c
9
, c
11
u
4
u
2
+ 1
c
6
(u
2
2u + 2)
2
c
10
(u
2
+ 2u + 2)
2
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
8
, c
12
(y
2
+ y + 1)
2
c
3
, c
5
, c
7
c
9
, c
11
(y
2
y + 1)
2
c
6
, c
10
(y
2
+ 4)
2
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 0.500000 + 0.866025I
b = 1.86603 0.50000I
2.02988I 10.00000 3.46410I
u = 0.866025 0.500000I
a = 0.500000 0.866025I
b = 1.86603 + 0.50000I
2.02988I 10.00000 + 3.46410I
u = 0.866025 + 0.500000I
a = 0.500000 0.866025I
b = 0.133975 0.500000I
2.02988I 10.00000 + 3.46410I
u = 0.866025 0.500000I
a = 0.500000 + 0.866025I
b = 0.133975 + 0.500000I
2.02988I 10.00000 3.46410I
25
VII. I
u
7
= hu
3
+ b u 1, 2u
3
u
2
+ a + u + 1, u
4
u
2
+ 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
3
=
2u
3
+ u
2
u 1
u
3
+ u + 1
a
8
=
1
u
2
a
4
=
2u
3
+ u
2
2u 1
u + 1
a
2
=
2u
3
+ u
2
+ u
2u
3
u
2
+ u + 1
a
5
=
u
3
u
3
u
a
6
=
3u
3
+ u
2
3u 2
u
2
+ 2u + 1
a
11
=
u
u
a
1
=
u
3
u
3
+ u
a
10
=
u
3
+ 2u
2
+ u + 1
2u
3
2u
2
+ u + 1
a
9
=
u
3
u
2
+ 2u + 4
u
3
2u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 12
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
12
(u
2
u + 1)
2
c
2
, c
8
(u
2
+ u + 1)
2
c
3
, c
5
, c
7
c
9
, c
11
u
4
u
2
+ 1
c
6
u
4
4u
3
+ 5u
2
2u + 1
c
10
u
4
2u
3
+ 5u
2
4u + 1
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
8
, c
12
(y
2
+ y + 1)
2
c
3
, c
5
, c
7
c
9
, c
11
(y
2
y + 1)
2
c
6
y
4
6y
3
+ 11y
2
+ 6y + 1
c
10
y
4
+ 6y
3
+ 11y
2
6y + 1
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 1.36603 + 2.36603I
b = 1.86603 0.50000I
2.02988I 10.00000 3.46410I
u = 0.866025 0.500000I
a = 1.36603 2.36603I
b = 1.86603 + 0.50000I
2.02988I 10.00000 + 3.46410I
u = 0.866025 + 0.500000I
a = 0.366025 + 0.633975I
b = 0.133975 0.500000I
2.02988I 10.00000 + 3.46410I
u = 0.866025 0.500000I
a = 0.366025 0.633975I
b = 0.133975 + 0.500000I
2.02988I 10.00000 3.46410I
29
VIII. I
u
8
= hu
3
+ u
2
+ b u, a 1, u
4
u
2
+ 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
3
=
1
u
3
u
2
+ u
a
8
=
1
u
2
a
4
=
u
3
+ u + 1
u
3
u
2
a
2
=
u
3
+ u
2
u
3
u
2
+ 2u + 1
a
5
=
u
3
u
3
u
a
6
=
u
3
2u
2
u + 1
2u
3
+ u
2
2u 2
a
11
=
u
u
a
1
=
u
3
u
3
+ u
a
10
=
u
3
2u 1
u
3
+ 2u
2
+ u 1
a
9
=
2u
3
+ u
2
u
u
3
+ 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 8
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
12
(u
2
u + 1)
2
c
2
, c
8
(u
2
+ u + 1)
2
c
3
, c
5
, c
7
c
9
, c
11
u
4
u
2
+ 1
c
6
u
4
+ 2u
3
+ 5u
2
+ 4u + 1
c
10
u
4
+ 4u
3
+ 5u
2
+ 2u + 1
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
8
, c
12
(y
2
+ y + 1)
2
c
3
, c
5
, c
7
c
9
, c
11
(y
2
y + 1)
2
c
6
y
4
+ 6y
3
+ 11y
2
6y + 1
c
10
y
4
6y
3
+ 11y
2
+ 6y + 1
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 1.00000
b = 0.36603 1.36603I
2.02988I 10.00000 + 3.46410I
u = 0.866025 0.500000I
a = 1.00000
b = 0.36603 + 1.36603I
2.02988I 10.00000 3.46410I
u = 0.866025 + 0.500000I
a = 1.00000
b = 1.36603 + 0.36603I
2.02988I 10.00000 3.46410I
u = 0.866025 0.500000I
a = 1.00000
b = 1.36603 0.36603I
2.02988I 10.00000 + 3.46410I
33
IX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
8
(u
4
+ 10u
3
+ 27u
2
22u + 1)
· (u
8
+ 12u
7
+ 26u
6
48u
5
+ 99u
4
48u
3
+ 26u
2
4u + 1)
2
· (u
8
+ 19u
7
+ ··· + 1248u + 256)
c
2
, c
8
(u
2
+ u + 1)
8
(u
4
2u
3
+ 7u
2
6u + 1)
· (u
8
+ 6u
6
5u
4
+ 6u
2
4u + 1)
2
· (u
8
u
7
+ 10u
6
13u
5
+ 42u
4
41u
3
+ 57u
2
24u + 16)
c
3
, c
5
, c
7
c
9
, c
11
(u
4
u
2
+ 1)
4
(u
4
2u
3
+ u
2
+ 2u 1)
· (u
8
3u
7
+ 4u
6
u
5
7u
3
+ 15u
2
12u + 4)
· (u
8
+ 2u
7
+ 2u
6
+ u
4
2u
2
+ 1)
2
c
4
, c
12
(u
2
u + 1)
8
(u
4
2u
3
+ 7u
2
6u + 1)
· (u
8
+ 6u
6
5u
4
+ 6u
2
4u + 1)
2
· (u
8
u
7
+ 10u
6
13u
5
+ 42u
4
41u
3
+ 57u
2
24u + 16)
c
6
(u
2
2u + 2)
2
(u
4
+ 10u
2
16u + 4)(u
4
4u
3
+ 5u
2
2u + 1)
· (u
4
+ 2u
3
+ 2u
2
+ 4u + 4)(u
4
+ 2u
3
+ 5u
2
+ 4u + 1)
· (u
8
+ 12u
6
16u
5
+ 49u
4
56u
3
+ 78u
2
54u + 27)
· (u
8
4u
7
+ 18u
6
58u
5
+ 111u
4
126u
3
+ 92u
2
40u + 11)
· (u
8
+ 7u
7
+ 25u
6
+ 52u
5
+ 54u
4
+ 16u
3
8u
2
+ 4)
c
10
(u
2
+ 2u + 2)
2
(u
4
+ 10u
2
16u + 4)(u
4
2u
3
+ 2u
2
4u + 4)
· (u
4
2u
3
+ 5u
2
4u + 1)(u
4
+ 4u
3
+ 5u
2
+ 2u + 1)
· (u
8
+ 12u
6
16u
5
+ 49u
4
56u
3
+ 78u
2
54u + 27)
· (u
8
4u
7
+ 18u
6
58u
5
+ 111u
4
126u
3
+ 92u
2
40u + 11)
· (u
8
+ 7u
7
+ 25u
6
+ 52u
5
+ 54u
4
+ 16u
3
8u
2
+ 4)
34
X. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)
8
(y
4
46y
3
+ 1171y
2
430y + 1)
· ((y
8
92y
7
+ ··· + 36y + 1)
2
)(y
8
45y
7
+ ··· 213504y + 65536)
c
2
, c
4
, c
8
c
12
(y
2
+ y + 1)
8
(y
4
+ 10y
3
+ 27y
2
22y + 1)
· (y
8
+ 12y
7
+ 26y
6
48y
5
+ 99y
4
48y
3
+ 26y
2
4y + 1)
2
· (y
8
+ 19y
7
+ ··· + 1248y + 256)
c
3
, c
5
, c
7
c
9
, c
11
(y
2
y + 1)
8
(y
4
2y
3
+ 7y
2
6y + 1)
· (y
8
+ 6y
6
5y
4
+ 6y
2
4y + 1)
2
· (y
8
y
7
+ 10y
6
13y
5
+ 42y
4
41y
3
+ 57y
2
24y + 16)
c
6
, c
10
(y
2
+ 4)
2
(y
4
4y
2
+ 16)(y
4
6y
3
+ 11y
2
+ 6y + 1)
· (y
4
+ 6y
3
+ 11y
2
6y + 1)(y
4
+ 20y
3
+ 108y
2
176y + 16)
· (y
8
+ y
7
+ 5y
6
244y
5
+ 860y
4
920y
3
+ 496y
2
64y + 16)
· (y
8
+ 20y
7
+ 82y
6
192y
5
+ 719y
4
+ 304y
3
+ 826y
2
+ 424y + 121)
· (y
8
+ 24y
7
+ ··· + 1296y + 729)
35