12n
0279
(K12n
0279
)
A knot diagram
1
Linearized knot diagam
3 6 7 11 10 2 5 6 12 8 7 9
Solving Sequence
5,11 4,8
7 12 3 10 6 2 1 9
c
4
c
7
c
11
c
3
c
10
c
5
c
2
c
1
c
9
c
6
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h27831408u
16
+ 38249416u
15
+ ··· + 40002991b + 40510496,
24958754u
16
42710149u
15
+ ··· + 40002991a 62762092, u
17
+ u
16
+ ··· + u 1i
I
u
2
= hb + u + 1, u
2
+ a 1, u
3
+ u
2
+ 1i
I
u
3
= h−u
3
+ b u, a + u + 1, u
4
u
3
+ 2u
2
2u + 1i
I
u
4
= h−u
3
+ b 2u 1, a, u
4
u
3
+ 3u
2
u + 1i
I
u
5
= h−au + 3b + a + 3u, a
2
+ au a 3, u
2
+ u + 1i
I
u
6
= h−2.19461 × 10
15
u
13
2.90056 × 10
15
u
12
+ ··· + 6.79307 × 10
17
b 2.81232 × 10
17
,
3.53923 × 10
17
u
13
5.35522 × 10
17
u
12
+ ··· + 7.20066 × 10
19
a 1.96602 × 10
20
,
u
14
+ u
13
+ ··· 98u + 53i
I
u
7
= hb 1, a, u
2
+ u + 1i
I
u
8
= hb u, a, u
2
+ u + 1i
* 8 irreducible components of dim
C
= 0, with total 50 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h2.78 × 10
7
u
16
+ 3.82 × 10
7
u
15
+ · · · + 4.00 × 10
7
b + 4.05 × 10
7
, 2.50 ×
10
7
u
16
4.27 × 10
7
u
15
+ · · · + 4.00 × 10
7
a 6.28 × 10
7
, u
17
+ u
16
+ · · · + u 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
0.623922u
16
+ 1.06767u
15
+ ··· 4.19761u + 1.56893
0.695733u
16
0.956164u
15
+ ··· + 4.01744u 1.01269
a
7
=
0.0718110u
16
+ 0.111510u
15
+ ··· 0.180171u + 0.556248
0.695733u
16
0.956164u
15
+ ··· + 4.01744u 1.01269
a
12
=
0.463872u
16
+ 0.672655u
15
+ ··· + 0.262187u 0.138788
0.152299u
16
0.109999u
15
+ ··· + 0.667583u 0.892029
a
3
=
0.683246u
16
+ 1.06132u
15
+ ··· 4.69765u + 1.76057
0.917110u
16
0.866468u
15
+ ··· + 2.11890u 0.443964
a
10
=
0.664842u
16
+ 0.607334u
15
+ ··· + 0.648473u + 2.52008
0.0486712u
16
+ 0.175319u
15
+ ··· + 0.946131u 1.76684
a
6
=
1.82038u
16
2.59604u
15
+ ··· + 4.42105u + 1.28803
0.390419u
16
+ 0.580544u
15
+ ··· + 0.744719u + 0.433797
a
2
=
0.842480u
16
+ 0.955949u
15
+ ··· + 0.0116457u + 2.65839
0.369554u
16
+ 0.163720u
15
+ ··· 0.697278u 1.38144
a
1
=
0.295603u
16
0.654268u
15
+ ··· + 1.33796u + 0.594847
0.323305u
16
+ 0.418596u
15
+ ··· 2.19115u + 0.801058
a
9
=
0.456059u
16
+ 0.624327u
15
+ ··· + 1.25113u + 2.05621
0.0909712u
16
+ 0.0800344u
15
+ ··· + 1.68586u 1.61454
(ii) Obstruction class = 1
(iii) Cusp Shapes =
217036647
40002991
u
16
332499894
40002991
u
15
+ ··· +
1336970457
40002991
u +
36116891
40002991
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
+ 8u
16
+ ··· 2u 1
c
2
, c
5
, c
6
u
17
+ 4u
15
+ ··· + 2u + 1
c
3
u
17
+ 3u
16
+ ··· + 96u + 29
c
4
, c
9
, c
12
u
17
u
16
+ ··· + u + 1
c
7
u
17
2u
16
+ ··· + 4u 1
c
8
u
17
+ 4u
16
+ ··· + 358u 23
c
10
u
17
2u
16
+ ··· 8u + 4
c
11
u
17
u
16
+ ··· + 192u + 79
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
+ 36y
16
+ ··· + 70y 1
c
2
, c
5
, c
6
y
17
+ 8y
16
+ ··· 2y 1
c
3
y
17
+ 31y
16
+ ··· 13636y 841
c
4
, c
9
, c
12
y
17
+ 21y
16
+ ··· 21y 1
c
7
y
17
+ 18y
15
+ ··· 10y 1
c
8
y
17
36y
16
+ ··· + 196750y 529
c
10
y
17
+ 8y
16
+ ··· + 96y 16
c
11
y
17
33y
16
+ ··· 62044y 6241
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.057958 + 1.037160I
a = 1.281730 0.156187I
b = 0.146308 0.285619I
0.90500 3.77030I 1.82474 + 3.48475I
u = 0.057958 1.037160I
a = 1.281730 + 0.156187I
b = 0.146308 + 0.285619I
0.90500 + 3.77030I 1.82474 3.48475I
u = 0.245125 + 1.028970I
a = 1.09741 + 0.90076I
b = 0.457121 + 1.056880I
4.13880 5.40035I 4.91651 + 8.34008I
u = 0.245125 1.028970I
a = 1.09741 0.90076I
b = 0.457121 1.056880I
4.13880 + 5.40035I 4.91651 8.34008I
u = 0.397934 + 0.813970I
a = 0.976997 0.362526I
b = 1.21505 1.10098I
0.17756 + 4.89986I 2.88050 11.83276I
u = 0.397934 0.813970I
a = 0.976997 + 0.362526I
b = 1.21505 + 1.10098I
0.17756 4.89986I 2.88050 + 11.83276I
u = 0.355960 + 0.790874I
a = 0.144449 + 0.440961I
b = 0.821906 + 0.423349I
0.33729 2.00763I 4.27790 + 4.10487I
u = 0.355960 0.790874I
a = 0.144449 0.440961I
b = 0.821906 0.423349I
0.33729 + 2.00763I 4.27790 4.10487I
u = 1.21780
a = 1.23271
b = 0.577819
2.39027 14.2090
u = 0.299458 + 0.466008I
a = 2.32811 + 0.28399I
b = 1.079530 0.618458I
3.08489 6.04547I 8.76917 + 6.36123I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.299458 0.466008I
a = 2.32811 0.28399I
b = 1.079530 + 0.618458I
3.08489 + 6.04547I 8.76917 6.36123I
u = 0.108066 + 0.363788I
a = 0.949976 0.957388I
b = 0.119264 + 0.837933I
0.52238 1.49726I 2.87825 + 5.01467I
u = 0.108066 0.363788I
a = 0.949976 + 0.957388I
b = 0.119264 0.837933I
0.52238 + 1.49726I 2.87825 5.01467I
u = 0.71553 + 2.03646I
a = 0.617685 + 0.005897I
b = 1.02465 1.09864I
17.8274 + 5.4627I 0.12519 2.24848I
u = 0.71553 2.03646I
a = 0.617685 0.005897I
b = 1.02465 + 1.09864I
17.8274 5.4627I 0.12519 + 2.24848I
u = 0.72995 + 2.19477I
a = 0.988459 + 0.323341I
b = 1.07394 + 1.02493I
17.5899 + 13.2299I 0.46218 5.67701I
u = 0.72995 2.19477I
a = 0.988459 0.323341I
b = 1.07394 1.02493I
17.5899 13.2299I 0.46218 + 5.67701I
6
II. I
u
2
= hb + u + 1, u
2
+ a 1, u
3
+ u
2
+ 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
u
2
+ 1
u 1
a
7
=
u
2
u
u 1
a
12
=
u
2
u
1
a
3
=
u
2
u + 1
u
2
u 1
a
10
=
2u + 1
u
2
u
a
6
=
u
2
+ u 1
u + 1
a
2
=
u + 2
2u
2
2u
a
1
=
u
2
+ u
u
2
a
9
=
2u + 2
u
2
2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
2
+ 7u + 3
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
3
2u
2
+ u + 1
c
2
, c
5
u
3
+ u + 1
c
3
, c
11
(u + 1)
3
c
4
, c
12
u
3
+ u
2
+ 1
c
6
, c
8
u
3
+ u 1
c
9
u
3
u
2
1
c
10
u
3
+ 3u
2
+ 4u + 3
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
3
2y
2
+ 5y 1
c
2
, c
5
, c
6
c
8
y
3
+ 2y
2
+ y 1
c
3
, c
11
(y 1)
3
c
4
, c
9
, c
12
y
3
y
2
2y 1
c
10
y
3
y
2
2y 9
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.232786 + 0.792552I
a = 1.57395 0.36899I
b = 1.23279 0.79255I
2.26573 6.33267I 0.03790 + 8.49978I
u = 0.232786 0.792552I
a = 1.57395 + 0.36899I
b = 1.23279 + 0.79255I
2.26573 + 6.33267I 0.03790 8.49978I
u = 1.46557
a = 1.14790
b = 0.465571
2.04827 9.92420
10
III. I
u
3
= h−u
3
+ b u, a + u + 1, u
4
u
3
+ 2u
2
2u + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
u 1
u
3
+ u
a
7
=
u
3
1
u
3
+ u
a
12
=
3u
2
4u + 3
u + 1
a
3
=
2u
3
+ 3u
2
u + 1
u
3
+ u
2
2u + 1
a
10
=
u
3
+ 2u
2
+ u
u
3
+ u
2
2u + 2
a
6
=
u
2
2u
2u
3
u
2
+ 3u 2
a
2
=
2u
3
+ 2u
2
2u + 3
u
3
2u
a
1
=
3u
3
+ 7u
2
8u + 5
2u
a
9
=
u
3
+ 5u
2
4u + 2
u
3
+ u
2
3u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
3
+ 5u 1
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
+ 2u
2
3u + 1
c
2
, c
5
u
4
2u
3
+ 2u
2
u + 1
c
3
u
4
u
3
+ 9u
2
u + 1
c
4
, c
12
u
4
u
3
+ 2u
2
2u + 1
c
6
u
4
+ 2u
3
+ 2u
2
+ u + 1
c
7
(u
2
+ u + 1)
2
c
8
u
4
3u
3
+ 8u
2
12u + 7
c
9
u
4
+ u
3
+ 2u
2
+ 2u + 1
c
10
u
4
+ 2u
3
u + 7
c
11
u
4
+ 4u
3
u
2
10u + 7
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
4
+ 4y
3
+ 6y
2
5y + 1
c
2
, c
5
, c
6
y
4
+ 2y
2
+ 3y + 1
c
3
y
4
+ 17y
3
+ 81y
2
+ 17y + 1
c
4
, c
9
, c
12
y
4
+ 3y
3
+ 2y
2
+ 1
c
7
(y
2
+ y + 1)
2
c
8
y
4
+ 7y
3
+ 6y
2
32y + 49
c
10
y
4
4y
3
+ 18y
2
y + 49
c
11
y
4
18y
3
+ 95y
2
114y + 49
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.621744 + 0.440597I
a = 1.62174 0.44060I
b = 0.500000 + 0.866025I
3.28987 4.05977I 1.50000 + 4.33013I
u = 0.621744 0.440597I
a = 1.62174 + 0.44060I
b = 0.500000 0.866025I
3.28987 + 4.05977I 1.50000 4.33013I
u = 0.121744 + 1.306620I
a = 0.87826 1.30662I
b = 0.500000 0.866025I
3.28987 + 4.05977I 1.50000 4.33013I
u = 0.121744 1.306620I
a = 0.87826 + 1.30662I
b = 0.500000 + 0.866025I
3.28987 4.05977I 1.50000 + 4.33013I
14
IV. I
u
4
= h−u
3
+ b 2u 1, a, u
4
u
3
+ 3u
2
u + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
0
u
3
+ 2u + 1
a
7
=
u
3
+ 2u + 1
u
3
+ 2u + 1
a
12
=
u
2
+ u 2
u
2
+ 2u 2
a
3
=
u
3
+ u
2
3u + 2
u
3
3u + 1
a
10
=
0
u
a
6
=
1
u
2
a
2
=
u + 1
2u + 1
a
1
=
u
3
2u 1
u
3
2u 1
a
9
=
u
3
+ 2u + 1
u
3
+ u
2
+ 2u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
3
u
2
+ 5u
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
9
, c
11
(u
2
u + 1)
2
c
2
, c
12
(u
2
+ u + 1)
2
c
4
, c
5
u
4
u
3
+ 3u
2
u + 1
c
7
, c
8
u
4
+ u
3
2u + 1
c
10
u
4
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
9
, c
11
c
12
(y
2
+ y + 1)
2
c
4
, c
5
y
4
+ 5y
3
+ 9y
2
+ 5y + 1
c
7
, c
8
y
4
y
3
+ 6y
2
4y + 1
c
10
y
4
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.148403 + 0.632502I
a = 0
b = 1.12196 + 1.05376I
4.05977I 0.24584 + 1.91854I
u = 0.148403 0.632502I
a = 0
b = 1.12196 1.05376I
4.05977I 0.24584 1.91854I
u = 0.35160 + 1.49853I
a = 0
b = 0.621964 + 0.187730I
4.05977I 7.74584 7.60774I
u = 0.35160 1.49853I
a = 0
b = 0.621964 0.187730I
4.05977I 7.74584 + 7.60774I
18
V. I
u
5
= h−au + 3b + a + 3u, a
2
+ au a 3, u
2
+ u + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
4
=
1
u + 1
a
8
=
a
1
3
au
1
3
a u
a
7
=
1
3
au +
2
3
a u
1
3
au
1
3
a u
a
12
=
5
3
au +
1
3
a
1
3
au
2
3
a + 1
a
3
=
2
3
au +
4
3
a + u + 3
1
3
au
2
3
a + u + 1
a
10
=
2au + a + 3u
u 1
a
6
=
au a 2
u
a
2
=
5
3
au
4
3
a 2u
u + 1
a
1
=
4
3
au
14
3
a 3u 5
1
3
au +
1
3
a + 1
a
9
=
7
3
au
1
3
a + 2u 3
2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2au 3a 5u 4
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
5u
3
+ 9u
2
5u + 1
c
2
, c
12
u
4
u
3
+ 3u
2
u + 1
c
3
u
4
+ 4u
3
+ 6u
2
+ u + 1
c
4
, c
5
(u
2
+ u + 1)
2
c
6
, c
9
u
4
+ u
3
+ 3u
2
+ u + 1
c
7
u
4
+ u
3
2u + 1
c
8
u
4
+ 4u
3
+ 6u
2
+ 7u + 7
c
10
u
4
+ 6u
2
+ 9u + 9
c
11
u
4
+ u
3
+ 3u
2
+ 7u + 7
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
4
7y
3
+ 33y
2
7y + 1
c
2
, c
6
, c
9
c
12
y
4
+ 5y
3
+ 9y
2
+ 5y + 1
c
3
y
4
4y
3
+ 30y
2
+ 11y + 1
c
4
, c
5
(y
2
+ y + 1)
2
c
7
y
4
y
3
+ 6y
2
4y + 1
c
8
y
4
4y
3
6y
2
+ 35y + 49
c
10
y
4
+ 12y
3
+ 54y
2
+ 27y + 81
c
11
y
4
+ 5y
3
+ 9y
2
7y + 49
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.095530 0.257041I
b = 1.12196 1.05376I
4.05977I 0.24584 1.91854I
u = 0.500000 + 0.866025I
a = 2.59553 0.60898I
b = 0.621964 + 0.187730I
4.05977I 7.74584 7.60774I
u = 0.500000 0.866025I
a = 1.095530 + 0.257041I
b = 1.12196 + 1.05376I
4.05977I 0.24584 + 1.91854I
u = 0.500000 0.866025I
a = 2.59553 + 0.60898I
b = 0.621964 0.187730I
4.05977I 7.74584 + 7.60774I
22
VI. I
u
6
= h−2.19 × 10
15
u
13
2.90 × 10
15
u
12
+ · · · + 6.79 × 10
17
b 2.81 ×
10
17
, 3.54 × 10
17
u
13
5.36 × 10
17
u
12
+ · · · + 7.20 × 10
19
a 1.97 ×
10
20
, u
14
+ u
13
+ · · · 98u + 53i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
0.00491515u
13
+ 0.00743713u
12
+ ··· 1.48607u + 2.73033
0.00323066u
13
+ 0.00426988u
12
+ ··· + 2.16045u + 0.413997
a
7
=
0.00814581u
13
+ 0.0117070u
12
+ ··· + 0.674379u + 3.14433
0.00323066u
13
+ 0.00426988u
12
+ ··· + 2.16045u + 0.413997
a
12
=
0.0123724u
13
+ 0.00795343u
12
+ ··· + 13.9704u 1.71865
0.00300637u
13
+ 0.00251071u
12
+ ··· + 3.63641u 0.788348
a
3
=
0.0104555u
13
0.0107429u
12
+ ··· 7.46839u + 0.477030
0.00265698u
13
0.00317978u
12
+ ··· 2.34330u + 0.220186
a
10
=
0.00740443u
13
+ 0.00396765u
12
+ ··· + 8.94568u 0.309042
0.00196165u
13
+ 0.00147507u
12
+ ··· + 3.38830u 0.621258
a
6
=
0.00576580u
13
+ 0.00758083u
12
+ ··· + 0.830146u + 2.59522
0.00344632u
13
+ 0.00301915u
12
+ ··· + 2.30371u + 0.222657
a
2
=
0.00273723u
13
0.000789063u
12
+ ··· 3.15318u + 1.21964
0.00164957u
13
0.00328941u
12
+ ··· 0.583214u + 0.127768
a
1
=
0.00210562u
13
0.00837365u
12
+ ··· 4.25378u + 1.54174
0.00386701u
13
+ 0.00234040u
12
+ ··· 0.635377u + 0.240016
a
9
=
0.00720203u
13
+ 0.00980153u
12
+ ··· + 2.73758u + 2.32633
0.00313757u
13
+ 0.000888876u
12
+ ··· + 3.09172u + 0.122919
(ii) Obstruction class = 1
(iii) Cusp Shapes =
40856511771921327
1358614961701335812
u
13
+
59994346491964077
1358614961701335812
u
12
+ ··· +
13415037849513161527
679307480850667906
u
6319351487276365787
1358614961701335812
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
8u
13
+ ··· 25u + 1
c
2
, c
5
, c
6
u
14
4u
12
+ ··· + 9u + 1
c
3
u
14
+ 42u
12
+ ··· + 78137u + 7937
c
4
, c
9
, c
12
u
14
u
13
+ ··· + 98u + 53
c
7
(u
7
+ u
6
u
4
+ 2u
3
+ 2u
2
1)
2
c
8
u
14
16u
12
+ ··· 13u 1
c
10
u
14
2u
13
+ ··· 160u + 64
c
11
u
14
19u
12
+ ··· 10u + 173
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
14
+ 32y
13
+ ··· 313y + 1
c
2
, c
5
, c
6
y
14
8y
13
+ ··· 25y + 1
c
3
y
14
+ 84y
13
+ ··· 978977713y + 62995969
c
4
, c
9
, c
12
y
14
+ 31y
13
+ ··· + 83040y + 2809
c
7
(y
7
y
6
+ 6y
5
5y
4
+ 10y
3
6y
2
+ 4y 1)
2
c
8
y
14
32y
13
+ ··· 235y + 1
c
10
y
14
+ 24y
13
+ ··· + 21504y + 4096
c
11
y
14
38y
13
+ ··· + 34846y + 29929
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.502626 + 0.663141I
a = 0.514604 + 0.044435I
b = 0.676751 + 0.491075I
0.37711 1.83261I 2.26809 + 4.51372I
u = 0.502626 0.663141I
a = 0.514604 0.044435I
b = 0.676751 0.491075I
0.37711 + 1.83261I 2.26809 4.51372I
u = 1.19118
a = 1.38337
b = 0.577619
2.39017 14.4470
u = 1.26649
a = 1.09551
b = 0.577619
2.39017 14.4470
u = 0.008952 + 0.262276I
a = 2.85503 0.49795I
b = 0.676751 + 0.491075I
0.37711 1.83261I 2.26809 + 4.51372I
u = 0.008952 0.262276I
a = 2.85503 + 0.49795I
b = 0.676751 0.491075I
0.37711 + 1.83261I 2.26809 4.51372I
u = 0.74076 + 1.86468I
a = 1.085270 0.357270I
b = 0.850452 0.793787I
6.35486 2.92126I 1.82532 + 2.85511I
u = 0.74076 1.86468I
a = 1.085270 + 0.357270I
b = 0.850452 + 0.793787I
6.35486 + 2.92126I 1.82532 2.85511I
u = 1.28802 + 1.77121I
a = 0.796866 + 0.008028I
b = 0.850452 + 0.793787I
6.35486 + 2.92126I 1.82532 2.85511I
u = 1.28802 1.77121I
a = 0.796866 0.008028I
b = 0.850452 0.793787I
6.35486 2.92126I 1.82532 + 2.85511I
26
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.16280 + 2.37083I
a = 1.063400 + 0.533787I
b = 0.962510 + 0.950397I
18.2464 3.4867I 0.16603 + 2.41435I
u = 0.16280 2.37083I
a = 1.063400 0.533787I
b = 0.962510 0.950397I
18.2464 + 3.4867I 0.16603 2.41435I
u = 0.03091 + 2.59918I
a = 0.549536 + 0.031095I
b = 0.962510 0.950397I
18.2464 + 3.4867I 0.16603 2.41435I
u = 0.03091 2.59918I
a = 0.549536 0.031095I
b = 0.962510 + 0.950397I
18.2464 3.4867I 0.16603 + 2.41435I
27
VII. I
u
7
= hb 1, a, u
2
+ u + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
4
=
1
u + 1
a
8
=
0
1
a
7
=
1
1
a
12
=
u
2u
a
3
=
u + 1
2u + 1
a
10
=
0
u
a
6
=
1
u + 1
a
2
=
0
u + 1
a
1
=
1
1
a
9
=
1
u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
28
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
9
, c
11
u
2
u + 1
c
2
, c
4
, c
5
c
12
u
2
+ u + 1
c
7
, c
8
(u + 1)
2
c
10
u
2
29
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
9
, c
11
, c
12
y
2
+ y + 1
c
7
, c
8
(y 1)
2
c
10
y
2
30
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0
b = 1.00000
0 3.00000
u = 0.500000 0.866025I
a = 0
b = 1.00000
0 3.00000
31
VIII. I
u
8
= hb u, a, u
2
+ u + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
4
=
1
u + 1
a
8
=
0
u
a
7
=
u
u
a
12
=
1
u + 1
a
3
=
2
u + 2
a
10
=
0
u
a
6
=
1
u + 1
a
2
=
u + 2
u + 1
a
1
=
u
u
a
9
=
u
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
32
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
8
, c
9
c
11
u
2
u + 1
c
2
, c
4
, c
5
c
12
u
2
+ u + 1
c
10
u
2
33
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
11
, c
12
y
2
+ y + 1
c
10
y
2
34
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0
b = 0.500000 + 0.866025I
0 0
u = 0.500000 0.866025I
a = 0
b = 0.500000 0.866025I
0 0
35
IX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
4
(u
3
2u
2
+ u + 1)(u
4
+ 2u
2
3u + 1)
· (u
4
5u
3
+ 9u
2
5u + 1)(u
14
8u
13
+ ··· 25u + 1)
· (u
17
+ 8u
16
+ ··· 2u 1)
c
2
, c
5
((u
2
+ u + 1)
4
)(u
3
+ u + 1)(u
4
2u
3
+ ··· u + 1)(u
4
u
3
+ ··· u + 1)
· (u
14
4u
12
+ ··· + 9u + 1)(u
17
+ 4u
15
+ ··· + 2u + 1)
c
3
((u + 1)
3
)(u
2
u + 1)
4
(u
4
u
3
+ ··· u + 1)(u
4
+ 4u
3
+ ··· + u + 1)
· (u
14
+ 42u
12
+ ··· + 78137u + 7937)(u
17
+ 3u
16
+ ··· + 96u + 29)
c
4
, c
12
((u
2
+ u + 1)
4
)(u
3
+ u
2
+ 1)(u
4
u
3
+ ··· 2u + 1)(u
4
u
3
+ ··· u + 1)
· (u
14
u
13
+ ··· + 98u + 53)(u
17
u
16
+ ··· + u + 1)
c
6
((u
2
u + 1)
4
)(u
3
+ u 1)(u
4
+ u
3
+ ··· + u + 1)(u
4
+ 2u
3
+ ··· + u + 1)
· (u
14
4u
12
+ ··· + 9u + 1)(u
17
+ 4u
15
+ ··· + 2u + 1)
c
7
((u + 1)
2
)(u
2
u + 1)(u
2
+ u + 1)
2
(u
3
2u
2
+ u + 1)(u
4
+ u
3
2u + 1)
2
· ((u
7
+ u
6
u
4
+ 2u
3
+ 2u
2
1)
2
)(u
17
2u
16
+ ··· + 4u 1)
c
8
(u + 1)
2
(u
2
u + 1)(u
3
+ u 1)(u
4
3u
3
+ 8u
2
12u + 7)
· (u
4
+ u
3
2u + 1)(u
4
+ 4u
3
+ ··· + 7u + 7)(u
14
16u
12
+ ··· 13u 1)
· (u
17
+ 4u
16
+ ··· + 358u 23)
c
9
((u
2
u + 1)
4
)(u
3
u
2
1)(u
4
+ u
3
+ ··· + 2u + 1)(u
4
+ u
3
+ ··· + u + 1)
· (u
14
u
13
+ ··· + 98u + 53)(u
17
u
16
+ ··· + u + 1)
c
10
u
8
(u
3
+ 3u
2
+ 4u + 3)(u
4
+ 6u
2
+ 9u + 9)(u
4
+ 2u
3
u + 7)
· (u
14
2u
13
+ ··· 160u + 64)(u
17
2u
16
+ ··· 8u + 4)
c
11
((u + 1)
3
)(u
2
u + 1)
4
(u
4
+ u
3
+ ··· + 7u + 7)(u
4
+ 4u
3
+ ··· 10u + 7)
· (u
14
19u
12
+ ··· 10u + 173)(u
17
u
16
+ ··· + 192u + 79)
36
X. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)
4
(y
3
2y
2
+ 5y 1)(y
4
7y
3
+ 33y
2
7y + 1)
· (y
4
+ 4y
3
+ 6y
2
5y + 1)(y
14
+ 32y
13
+ ··· 313y + 1)
· (y
17
+ 36y
16
+ ··· + 70y 1)
c
2
, c
5
, c
6
(y
2
+ y + 1)
4
(y
3
+ 2y
2
+ y 1)(y
4
+ 2y
2
+ 3y + 1)
· (y
4
+ 5y
3
+ 9y
2
+ 5y + 1)(y
14
8y
13
+ ··· 25y + 1)
· (y
17
+ 8y
16
+ ··· 2y 1)
c
3
(y 1)
3
(y
2
+ y + 1)
4
(y
4
4y
3
+ 30y
2
+ 11y + 1)
· (y
4
+ 17y
3
+ 81y
2
+ 17y + 1)
· (y
14
+ 84y
13
+ ··· 978977713y + 62995969)
· (y
17
+ 31y
16
+ ··· 13636y 841)
c
4
, c
9
, c
12
(y
2
+ y + 1)
4
(y
3
y
2
2y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)
· (y
4
+ 5y
3
+ 9y
2
+ 5y + 1)(y
14
+ 31y
13
+ ··· + 83040y + 2809)
· (y
17
+ 21y
16
+ ··· 21y 1)
c
7
(y 1)
2
(y
2
+ y + 1)
3
(y
3
2y
2
+ 5y 1)(y
4
y
3
+ 6y
2
4y + 1)
2
· (y
7
y
6
+ 6y
5
5y
4
+ 10y
3
6y
2
+ 4y 1)
2
· (y
17
+ 18y
15
+ ··· 10y 1)
c
8
((y 1)
2
)(y
2
+ y + 1)(y
3
+ 2y
2
+ y 1)(y
4
4y
3
+ ··· + 35y + 49)
· (y
4
y
3
+ 6y
2
4y + 1)(y
4
+ 7y
3
+ 6y
2
32y + 49)
· (y
14
32y
13
+ ··· 235y + 1)(y
17
36y
16
+ ··· + 196750y 529)
c
10
y
8
(y
3
y
2
2y 9)(y
4
4y
3
+ 18y
2
y + 49)
· (y
4
+ 12y
3
+ 54y
2
+ 27y + 81)(y
14
+ 24y
13
+ ··· + 21504y + 4096)
· (y
17
+ 8y
16
+ ··· + 96y 16)
c
11
(y 1)
3
(y
2
+ y + 1)
4
(y
4
18y
3
+ 95y
2
114y + 49)
· (y
4
+ 5y
3
+ 9y
2
7y + 49)(y
14
38y
13
+ ··· + 34846y + 29929)
· (y
17
33y
16
+ ··· 62044y 6241)
37