12n
0280
(K12n
0280
)
A knot diagram
1
Linearized knot diagam
3 6 7 11 9 2 5 11 12 5 7 9
Solving Sequence
2,7
6 3 4
1,9
5 12 10 11 8
c
6
c
2
c
3
c
1
c
5
c
12
c
9
c
11
c
8
c
4
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
18
+ 4u
17
+ ··· + b 1, u
19
+ 5u
18
+ ··· + 2a + 4, u
20
5u
19
+ ··· 10u + 2i
I
u
2
= hu
9
+ 2u
8
+ 4u
7
+ 4u
6
+ 5u
5
+ 4u
4
+ 4u
3
+ 2u
2
+ b + u + 1,
u
10
4u
9
7u
8
10u
7
9u
6
11u
5
10u
4
8u
3
4u
2
+ 2a 3u 4,
u
11
+ 2u
10
+ 5u
9
+ 6u
8
+ 9u
7
+ 9u
6
+ 10u
5
+ 8u
4
+ 6u
3
+ 5u
2
+ 2u + 2i
I
u
3
= h−u
7
a 3u
5
a u
6
+ u
4
a 4u
3
a 2u
4
+ u
2
a + u
3
2au u
2
+ b + a + u + 1,
2u
7
a + 5u
7
+ ··· a 4, u
8
+ u
7
+ 3u
6
+ 2u
5
+ 3u
4
+ 2u
3
1i
* 3 irreducible components of dim
C
= 0, with total 47 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
18
+4u
17
+· · ·+b 1, u
19
+5u
18
+· · ·+2a +4, u
20
5u
19
+· · ·10u +2i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
9
=
1
2
u
19
5
2
u
18
+ ··· + 10u 2
u
18
4u
17
+ ··· 3u + 1
a
5
=
3
2
u
19
13
2
u
18
+ ··· + u + 1
u
18
+ 5u
17
+ ··· + 11u 3
a
12
=
3
2
u
19
+
13
2
u
18
+ ··· 7u + 1
u
19
4u
18
+ ··· + 5u 1
a
10
=
2u
19
10u
18
+ ··· + 13u 2
2u
19
+ 8u
18
+ ··· 9u + 2
a
11
=
5
2
u
19
+
21
2
u
18
+ ··· 12u + 2
u
19
4u
18
+ ··· + 5u 1
a
8
=
1
2
u
19
1
2
u
18
+ ··· u + 1
u
19
4u
18
+ ··· + 4u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
19
+ 14u
18
49u
17
+ 118u
16
238u
15
+ 405u
14
622u
13
+ 886u
12
1180u
11
+
1475u
10
1689u
9
+1761u
8
1647u
7
+1374u
6
1015u
5
+655u
4
363u
3
+170u
2
66u+12
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
+ 11u
19
+ ··· + 36u + 4
c
2
, c
6
u
20
5u
19
+ ··· 10u + 2
c
3
u
20
+ 5u
19
+ ··· 10u + 10
c
4
, c
7
, c
10
u
20
+ 15u
18
+ ··· + 2u + 1
c
5
u
20
+ u
19
+ ··· + u + 1
c
8
u
20
+ 11u
19
+ ··· + 10u + 10
c
9
, c
12
u
20
3u
19
+ ··· + 3u + 1
c
11
u
20
19u
19
+ ··· 2304u + 256
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
y
19
+ ··· 208y + 16
c
2
, c
6
y
20
+ 11y
19
+ ··· + 36y + 4
c
3
y
20
13y
19
+ ··· + 1940y + 100
c
4
, c
7
, c
10
y
20
+ 30y
19
+ ··· + 4y + 1
c
5
y
20
19y
19
+ ··· + 7y + 1
c
8
y
20
3y
19
+ ··· + 1460y + 100
c
9
, c
12
y
20
11y
19
+ ··· + 11y + 1
c
11
y
20
9y
19
+ ··· + 524288y + 65536
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.988466 + 0.164208I
a = 0.083650 0.252088I
b = 1.31829 0.86406I
3.16459 7.53851I 1.81526 + 4.10532I
u = 0.988466 0.164208I
a = 0.083650 + 0.252088I
b = 1.31829 + 0.86406I
3.16459 + 7.53851I 1.81526 4.10532I
u = 0.230979 + 0.893127I
a = 1.51428 + 0.24987I
b = 0.618322 + 1.140400I
0.82008 3.37374I 7.04529 + 0.08324I
u = 0.230979 0.893127I
a = 1.51428 0.24987I
b = 0.618322 1.140400I
0.82008 + 3.37374I 7.04529 0.08324I
u = 0.743178 + 0.313816I
a = 0.040715 + 0.499230I
b = 0.715480 0.112619I
0.854263 + 0.828569I 4.29561 2.11881I
u = 0.743178 0.313816I
a = 0.040715 0.499230I
b = 0.715480 + 0.112619I
0.854263 0.828569I 4.29561 + 2.11881I
u = 0.348476 + 1.207610I
a = 1.77185 0.05613I
b = 1.221280 0.316490I
5.09486 + 4.27767I 6.93870 3.93528I
u = 0.348476 1.207610I
a = 1.77185 + 0.05613I
b = 1.221280 + 0.316490I
5.09486 4.27767I 6.93870 + 3.93528I
u = 0.904379 + 0.906046I
a = 0.071879 0.437712I
b = 0.847385 0.116530I
8.73338 3.30325I 7.62069 + 4.42366I
u = 0.904379 0.906046I
a = 0.071879 + 0.437712I
b = 0.847385 + 0.116530I
8.73338 + 3.30325I 7.62069 4.42366I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.130781 + 0.697014I
a = 1.214520 + 0.459557I
b = 0.132234 0.751539I
0.259969 + 1.114940I 6.76006 5.17901I
u = 0.130781 0.697014I
a = 1.214520 0.459557I
b = 0.132234 + 0.751539I
0.259969 1.114940I 6.76006 + 5.17901I
u = 0.590387 + 1.171510I
a = 0.831475 0.979178I
b = 0.850680 0.233951I
3.33496 + 4.34846I 6.57341 3.74600I
u = 0.590387 1.171510I
a = 0.831475 + 0.979178I
b = 0.850680 + 0.233951I
3.33496 4.34846I 6.57341 + 3.74600I
u = 0.181642 + 0.634443I
a = 0.754937 + 0.401077I
b = 0.044656 0.325945I
0.338993 + 1.073370I 4.95066 6.25444I
u = 0.181642 0.634443I
a = 0.754937 0.401077I
b = 0.044656 + 0.325945I
0.338993 1.073370I 4.95066 + 6.25444I
u = 0.564854 + 1.265020I
a = 1.91175 + 0.60844I
b = 1.44189 + 1.06169I
0.23167 + 13.11790I 4.38679 6.82889I
u = 0.564854 1.265020I
a = 1.91175 0.60844I
b = 1.44189 1.06169I
0.23167 13.11790I 4.38679 + 6.82889I
u = 0.349135 + 1.341000I
a = 1.18393 + 0.98393I
b = 1.47508 0.55967I
1.78563 2.89136I 6.11353 + 1.76882I
u = 0.349135 1.341000I
a = 1.18393 0.98393I
b = 1.47508 + 0.55967I
1.78563 + 2.89136I 6.11353 1.76882I
6
II.
I
u
2
= hu
9
+2u
8
+· · · +b+1, u
10
4u
9
+· · · +2a4, u
11
+2u
10
+· · · +2u+2i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
9
=
1
2
u
10
+ 2u
9
+ ··· +
3
2
u + 2
u
9
2u
8
4u
7
4u
6
5u
5
4u
4
4u
3
2u
2
u 1
a
5
=
5
2
u
10
4u
9
+ ···
11
2
u + 1
u
10
+ 2u
9
+ 4u
8
+ 5u
7
+ 6u
6
+ 7u
5
+ 6u
4
+ 5u
3
+ 3u
2
+ 3u + 1
a
12
=
1
2
u
10
2u
9
+ ···
5
2
u 3
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
a
10
=
u
10
+ 5u
9
+ 9u
8
+ 15u
7
+ 15u
6
+ 19u
5
+ 17u
4
+ 15u
3
+ 9u
2
+ 6u + 6
u
9
2u
8
4u
7
4u
6
5u
5
4u
4
4u
3
2u
2
u 2
a
11
=
1
2
u
10
2u
9
+ ···
7
2
u 4
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
a
8
=
3
2
u
10
+ 7u
9
+ ··· +
19
2
u + 11
u
9
2u
8
4u
7
4u
6
6u
5
5u
4
6u
3
3u
2
2u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
10
6u
9
12u
8
23u
7
27u
6
31u
5
30u
4
25u
3
20u
2
10u 12
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
6u
10
+ ··· 16u + 4
c
2
u
11
2u
10
+ 5u
9
6u
8
+ 9u
7
9u
6
+ 10u
5
8u
4
+ 6u
3
5u
2
+ 2u 2
c
3
u
11
+ 2u
10
+ u
9
3u
8
15u
7
6u
6
+ u
5
17u
4
+ 8u
3
7u
2
6u 2
c
4
, c
7
u
11
+ 5u
9
u
8
+ u
7
4u
6
14u
5
u
4
+ 4u
3
+ 7u
2
+ 3u + 1
c
5
u
11
+ u
10
+ u
9
+ 5u
8
4u
7
14u
6
+ u
5
11u
4
+ u
3
+ 2u
2
+ 2u 1
c
6
u
11
+ 2u
10
+ 5u
9
+ 6u
8
+ 9u
7
+ 9u
6
+ 10u
5
+ 8u
4
+ 6u
3
+ 5u
2
+ 2u + 2
c
8
u
11
+ 8u
10
+ ··· + 2u 2
c
9
u
11
3u
10
+ u
9
+ 5u
8
7u
7
+ 2u
6
+ 7u
5
7u
4
+ 2u
2
2u 1
c
10
u
11
+ 5u
9
+ u
8
+ u
7
+ 4u
6
14u
5
+ u
4
+ 4u
3
7u
2
+ 3u 1
c
11
u
11
+ 2u
10
2u
9
+ 7u
7
7u
6
2u
5
+ 7u
4
5u
3
u
2
+ 3u 1
c
12
u
11
+ 3u
10
+ u
9
5u
8
7u
7
2u
6
+ 7u
5
+ 7u
4
2u
2
2u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
+ 2y
10
+ ··· 8y 16
c
2
, c
6
y
11
+ 6y
10
+ ··· 16y 4
c
3
y
11
2y
10
+ ··· + 8y 4
c
4
, c
7
, c
10
y
11
+ 10y
10
+ ··· 5y 1
c
5
y
11
+ y
10
+ ··· + 8y 1
c
8
y
11
12y
10
+ ··· + 40y 4
c
9
, c
12
y
11
7y
10
+ ··· + 8y 1
c
11
y
11
8y
10
+ ··· + 7y 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.952070
a = 0.0720390
b = 1.36568
4.80947 8.08890
u = 0.403355 + 0.969097I
a = 0.951198 0.161815I
b = 0.426727 1.018660I
0.52666 + 4.17339I 3.41102 8.36050I
u = 0.403355 0.969097I
a = 0.951198 + 0.161815I
b = 0.426727 + 1.018660I
0.52666 4.17339I 3.41102 + 8.36050I
u = 0.186482 + 0.923547I
a = 2.30424 + 1.12564I
b = 1.117110 + 0.211347I
5.27605 0.83166I 7.37066 0.42439I
u = 0.186482 0.923547I
a = 2.30424 1.12564I
b = 1.117110 0.211347I
5.27605 + 0.83166I 7.37066 + 0.42439I
u = 0.525451 + 0.714735I
a = 0.807343 0.228094I
b = 0.412616 + 0.757804I
0.321119 0.386062I 0.453787 0.883807I
u = 0.525451 0.714735I
a = 0.807343 + 0.228094I
b = 0.412616 0.757804I
0.321119 + 0.386062I 0.453787 + 0.883807I
u = 0.794887 + 0.904829I
a = 0.518512 0.481273I
b = 0.484466 0.075834I
9.44423 2.99337I 2.32422 + 0.94995I
u = 0.794887 0.904829I
a = 0.518512 + 0.481273I
b = 0.484466 + 0.075834I
9.44423 + 2.99337I 2.32422 0.94995I
u = 0.471402 + 1.288100I
a = 1.60586 + 0.79965I
b = 1.57940 + 0.31572I
8.82013 5.04219I 10.54429 + 3.49363I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.471402 1.288100I
a = 1.60586 0.79965I
b = 1.57940 0.31572I
8.82013 + 5.04219I 10.54429 3.49363I
11
III. I
u
3
= h−u
7
a u
6
+ · · · + a + 1, 2u
7
a + 5u
7
+ · · · a 4, u
8
+ u
7
+
3u
6
+ 2u
5
+ 3u
4
+ 2u
3
1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
9
=
a
u
7
a + u
6
+ ··· a 1
a
5
=
u
7
a + 4u
7
+ ··· 5u + 2
u
7
a 2u
5
a + u
4
a 2u
3
a + u
2
a + u
3
+ a + u 1
a
12
=
u
6
a + u
6
2u
4
a + u
3
a + u
4
u
2
a u
3
+ au + a 2
1
a
10
=
2u
7
a 2u
6
a + ··· + 4a 5
u
6
+ 2u
4
+ u
2
2
a
11
=
u
6
a + u
6
2u
4
a + u
3
a + u
4
u
2
a u
3
+ au + a 1
1
a
8
=
u
7
a 2u
6
a + ··· + 4a 2
u
7
a + 2u
6
+ ··· a 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
4u
6
8u
5
4u
4
4u
3
4u
2
+ 4u + 2
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
8
+ 5u
7
+ 11u
6
+ 10u
5
u
4
10u
3
6u
2
+ 1)
2
c
2
, c
6
(u
8
+ u
7
+ 3u
6
+ 2u
5
+ 3u
4
+ 2u
3
1)
2
c
3
(u
8
u
7
5u
6
+ 4u
5
+ 7u
4
4u
3
2u
2
+ 2u 1)
2
c
4
, c
7
, c
10
u
16
u
15
+ ··· + 8u + 1
c
5
u
16
+ u
15
+ ··· 550u 131
c
8
(u
8
5u
7
+ 5u
6
+ 10u
5
17u
4
6u
3
+ 18u
2
7)
2
c
9
, c
12
u
16
5u
15
+ ··· + 290u 41
c
11
(u + 1)
16
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
8
3y
7
+ 19y
6
34y
5
+ 71y
4
66y
3
+ 34y
2
12y + 1)
2
c
2
, c
6
(y
8
+ 5y
7
+ 11y
6
+ 10y
5
y
4
10y
3
6y
2
+ 1)
2
c
3
(y
8
11y
7
+ 47y
6
98y
5
+ 103y
4
50y
3
+ 6y
2
+ 1)
2
c
4
, c
7
, c
10
y
16
+ 15y
15
+ ··· + 36y + 1
c
5
y
16
5y
15
+ ··· 254292y + 17161
c
8
(y
8
15y
7
+ 91y
6
294y
5
+ 575y
4
718y
3
+ 562y
2
252y + 49)
2
c
9
, c
12
y
16
9y
15
+ ··· 2920y + 1681
c
11
(y 1)
16
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.914675
a = 0.436222
b = 0.809231
3.59615 0.177900
u = 0.914675
a = 0.189279
b = 1.63136
3.59615 0.177900
u = 0.252896 + 0.819281I
a = 2.65515 0.52400I
b = 1.80316 + 0.56016I
6.08846 1.27532I 2.81947 + 5.08518I
u = 0.252896 + 0.819281I
a = 2.35083 2.13459I
b = 0.321107 0.355262I
6.08846 1.27532I 2.81947 + 5.08518I
u = 0.252896 0.819281I
a = 2.65515 + 0.52400I
b = 1.80316 0.56016I
6.08846 + 1.27532I 2.81947 5.08518I
u = 0.252896 0.819281I
a = 2.35083 + 2.13459I
b = 0.321107 + 0.355262I
6.08846 + 1.27532I 2.81947 5.08518I
u = 0.394459 + 1.112500I
a = 0.171959 + 1.373110I
b = 0.63430 1.69466I
2.23454 + 3.63283I 2.42240 4.51802I
u = 0.394459 + 1.112500I
a = 1.74900 + 0.37851I
b = 0.413053 + 1.180340I
2.23454 + 3.63283I 2.42240 4.51802I
u = 0.394459 1.112500I
a = 0.171959 1.373110I
b = 0.63430 + 1.69466I
2.23454 3.63283I 2.42240 + 4.51802I
u = 0.394459 1.112500I
a = 1.74900 0.37851I
b = 0.413053 1.180340I
2.23454 3.63283I 2.42240 + 4.51802I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.473514 + 1.273020I
a = 1.39433 0.52484I
b = 0.980224 0.230007I
7.49271 4.93524I 2.98443 + 2.99422I
u = 0.473514 + 1.273020I
a = 1.76444 + 0.96072I
b = 1.94259 + 0.45832I
7.49271 4.93524I 2.98443 + 2.99422I
u = 0.473514 1.273020I
a = 1.39433 + 0.52484I
b = 0.980224 + 0.230007I
7.49271 + 4.93524I 2.98443 2.99422I
u = 0.473514 1.273020I
a = 1.76444 0.96072I
b = 1.94259 0.45832I
7.49271 + 4.93524I 2.98443 2.99422I
u = 0.578577
a = 0.67601 + 1.65350I
b = 0.701810 + 1.159550I
5.22545 0.996810
u = 0.578577
a = 0.67601 1.65350I
b = 0.701810 1.159550I
5.22545 0.996810
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
8
+ 5u
7
+ 11u
6
+ 10u
5
u
4
10u
3
6u
2
+ 1)
2
· (u
11
6u
10
+ ··· 16u + 4)(u
20
+ 11u
19
+ ··· + 36u + 4)
c
2
(u
8
+ u
7
+ 3u
6
+ 2u
5
+ 3u
4
+ 2u
3
1)
2
· (u
11
2u
10
+ 5u
9
6u
8
+ 9u
7
9u
6
+ 10u
5
8u
4
+ 6u
3
5u
2
+ 2u 2)
· (u
20
5u
19
+ ··· 10u + 2)
c
3
(u
8
u
7
5u
6
+ 4u
5
+ 7u
4
4u
3
2u
2
+ 2u 1)
2
· (u
11
+ 2u
10
+ u
9
3u
8
15u
7
6u
6
+ u
5
17u
4
+ 8u
3
7u
2
6u 2)
· (u
20
+ 5u
19
+ ··· 10u + 10)
c
4
, c
7
(u
11
+ 5u
9
u
8
+ u
7
4u
6
14u
5
u
4
+ 4u
3
+ 7u
2
+ 3u + 1)
· (u
16
u
15
+ ··· + 8u + 1)(u
20
+ 15u
18
+ ··· + 2u + 1)
c
5
(u
11
+ u
10
+ u
9
+ 5u
8
4u
7
14u
6
+ u
5
11u
4
+ u
3
+ 2u
2
+ 2u 1)
· (u
16
+ u
15
+ ··· 550u 131)(u
20
+ u
19
+ ··· + u + 1)
c
6
(u
8
+ u
7
+ 3u
6
+ 2u
5
+ 3u
4
+ 2u
3
1)
2
· (u
11
+ 2u
10
+ 5u
9
+ 6u
8
+ 9u
7
+ 9u
6
+ 10u
5
+ 8u
4
+ 6u
3
+ 5u
2
+ 2u + 2)
· (u
20
5u
19
+ ··· 10u + 2)
c
8
(u
8
5u
7
+ 5u
6
+ 10u
5
17u
4
6u
3
+ 18u
2
7)
2
· (u
11
+ 8u
10
+ ··· + 2u 2)(u
20
+ 11u
19
+ ··· + 10u + 10)
c
9
(u
11
3u
10
+ u
9
+ 5u
8
7u
7
+ 2u
6
+ 7u
5
7u
4
+ 2u
2
2u 1)
· (u
16
5u
15
+ ··· + 290u 41)(u
20
3u
19
+ ··· + 3u + 1)
c
10
(u
11
+ 5u
9
+ u
8
+ u
7
+ 4u
6
14u
5
+ u
4
+ 4u
3
7u
2
+ 3u 1)
· (u
16
u
15
+ ··· + 8u + 1)(u
20
+ 15u
18
+ ··· + 2u + 1)
c
11
((u + 1)
16
)(u
11
+ 2u
10
+ ··· + 3u 1)
· (u
20
19u
19
+ ··· 2304u + 256)
c
12
(u
11
+ 3u
10
+ u
9
5u
8
7u
7
2u
6
+ 7u
5
+ 7u
4
2u
2
2u + 1)
· (u
16
5u
15
+ ··· + 290u 41)(u
20
3u
19
+ ··· + 3u + 1)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
8
3y
7
+ 19y
6
34y
5
+ 71y
4
66y
3
+ 34y
2
12y + 1)
2
· (y
11
+ 2y
10
+ ··· 8y 16)(y
20
y
19
+ ··· 208y + 16)
c
2
, c
6
(y
8
+ 5y
7
+ 11y
6
+ 10y
5
y
4
10y
3
6y
2
+ 1)
2
· (y
11
+ 6y
10
+ ··· 16y 4)(y
20
+ 11y
19
+ ··· + 36y + 4)
c
3
(y
8
11y
7
+ 47y
6
98y
5
+ 103y
4
50y
3
+ 6y
2
+ 1)
2
· (y
11
2y
10
+ ··· + 8y 4)(y
20
13y
19
+ ··· + 1940y + 100)
c
4
, c
7
, c
10
(y
11
+ 10y
10
+ ··· 5y 1)(y
16
+ 15y
15
+ ··· + 36y + 1)
· (y
20
+ 30y
19
+ ··· + 4y + 1)
c
5
(y
11
+ y
10
+ ··· + 8y 1)(y
16
5y
15
+ ··· 254292y + 17161)
· (y
20
19y
19
+ ··· + 7y + 1)
c
8
(y
8
15y
7
+ 91y
6
294y
5
+ 575y
4
718y
3
+ 562y
2
252y + 49)
2
· (y
11
12y
10
+ ··· + 40y 4)(y
20
3y
19
+ ··· + 1460y + 100)
c
9
, c
12
(y
11
7y
10
+ ··· + 8y 1)(y
16
9y
15
+ ··· 2920y + 1681)
· (y
20
11y
19
+ ··· + 11y + 1)
c
11
((y 1)
16
)(y
11
8y
10
+ ··· + 7y 1)
· (y
20
9y
19
+ ··· + 524288y + 65536)
18