12n
0281
(K12n
0281
)
A knot diagram
1
Linearized knot diagam
3 6 7 11 9 2 5 11 1 5 7 10
Solving Sequence
5,7 8,11
9 12 4 3 10 1 2 6
c
7
c
8
c
11
c
4
c
3
c
10
c
12
c
1
c
6
c
2
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h1.82494 × 10
252
u
57
+ 1.82764 × 10
251
u
56
+ ··· + 7.78104 × 10
252
b 1.44190 × 10
253
,
1.60321 × 10
253
u
57
+ 2.56712 × 10
252
u
56
+ ··· + 7.78104 × 10
252
a 9.32328 × 10
253
,
u
58
+ 51u
56
+ ··· 13u + 1i
I
u
2
= h−6.06692 × 10
19
u
19
+ 9.41482 × 10
19
u
18
+ ··· + 3.14683 × 10
19
b + 6.57389 × 10
19
,
3.61452 × 10
19
u
19
9.01759 × 10
19
u
18
+ ··· + 3.14683 × 10
19
a 2.09263 × 10
20
, u
20
u
19
+ ··· + 8u + 1i
* 2 irreducible components of dim
C
= 0, with total 78 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.82 × 10
252
u
57
+ 1.83 × 10
251
u
56
+ · · · + 7.78 × 10
252
b 1.44 ×
10
253
, 1.60 × 10
253
u
57
+ 2.57 × 10
252
u
56
+ · · · + 7.78 × 10
252
a 9.32 ×
10
253
, u
58
+ 51u
56
+ · · · 13u + 1i
(i) Arc colorings
a
5
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
11
=
2.06041u
57
0.329920u
56
+ ··· 90.1499u + 11.9821
0.234536u
57
0.0234883u
56
+ ··· 14.4397u + 1.85309
a
9
=
1.04387u
57
+ 0.167750u
56
+ ··· + 52.9864u 10.8517
0.0421526u
57
+ 0.0173690u
56
+ ··· 0.700871u 1.05817
a
12
=
2.29494u
57
0.353409u
56
+ ··· 104.590u + 13.8351
0.234536u
57
0.0234883u
56
+ ··· 14.4397u + 1.85309
a
4
=
1.79431u
57
0.269090u
56
+ ··· 65.9513u + 8.42012
0.213324u
57
0.0357409u
56
+ ··· 2.42241u + 1.31296
a
3
=
2.00763u
57
0.304831u
56
+ ··· 68.3737u + 9.73308
0.213324u
57
0.0357409u
56
+ ··· 2.42241u + 1.31296
a
10
=
2.06041u
57
0.329920u
56
+ ··· 90.1499u + 11.9821
0.208881u
57
0.0233171u
56
+ ··· 12.2111u + 1.52317
a
1
=
0.509191u
57
0.192771u
56
+ ··· 58.2608u + 2.04977
0.241169u
57
0.0405319u
56
+ ··· 13.7690u + 1.62656
a
2
=
0.507749u
57
+ 0.0273770u
56
+ ··· 44.2370u + 10.1377
0.125301u
57
+ 0.0350847u
56
+ ··· + 1.61989u + 0.441525
a
6
=
1.13600u
57
+ 0.228021u
56
+ ··· + 37.0000u 3.53009
0.207315u
57
+ 0.0430301u
56
+ ··· + 3.66730u 1.06964
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.19694u
57
0.252356u
56
+ ··· 49.4008u + 2.76120
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
58
+ 28u
57
+ ··· + 886u + 121
c
2
, c
6
u
58
2u
57
+ ··· 40u + 11
c
3
u
58
+ 2u
57
+ ··· 2542u + 3839
c
4
, c
10
u
58
u
57
+ ··· + 10u + 1
c
5
u
58
+ 3u
57
+ ··· + 60u + 88
c
7
u
58
+ 51u
56
+ ··· 13u + 1
c
8
u
58
+ 3u
57
+ ··· + 12935u + 481
c
9
, c
12
u
58
+ 6u
57
+ ··· + 289u + 41
c
11
u
58
3u
57
+ ··· 790066u + 205619
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
58
+ 12y
57
+ ··· + 130490y + 14641
c
2
, c
6
y
58
+ 28y
57
+ ··· + 886y + 121
c
3
y
58
4y
57
+ ··· 237147274y + 14737921
c
4
, c
10
y
58
+ 75y
57
+ ··· 50y + 1
c
5
y
58
21y
57
+ ··· 103568y + 7744
c
7
y
58
+ 102y
57
+ ··· 15y + 1
c
8
y
58
81y
57
+ ··· + 2622113y + 231361
c
9
, c
12
y
58
+ 22y
57
+ ··· + 63341y + 1681
c
11
y
58
77y
57
+ ··· + 288375606396y + 42279173161
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.605403 + 0.770255I
a = 0.476324 1.234450I
b = 0.836696 0.528282I
3.29534 3.17863I 0
u = 0.605403 0.770255I
a = 0.476324 + 1.234450I
b = 0.836696 + 0.528282I
3.29534 + 3.17863I 0
u = 0.785984 + 0.673927I
a = 0.503071 + 1.150720I
b = 0.611023 + 1.176480I
3.08132 + 0.18394I 0
u = 0.785984 0.673927I
a = 0.503071 1.150720I
b = 0.611023 1.176480I
3.08132 0.18394I 0
u = 0.933105 + 0.463612I
a = 0.616969 0.636242I
b = 0.49017 1.36421I
0.163561 0.229805I 0
u = 0.933105 0.463612I
a = 0.616969 + 0.636242I
b = 0.49017 + 1.36421I
0.163561 + 0.229805I 0
u = 1.027790 + 0.224558I
a = 0.284389 0.917517I
b = 0.586774 + 0.431083I
2.33014 6.26866I 0
u = 1.027790 0.224558I
a = 0.284389 + 0.917517I
b = 0.586774 0.431083I
2.33014 + 6.26866I 0
u = 0.927914 + 0.522270I
a = 0.693785 + 0.874215I
b = 0.21260 + 1.64706I
1.22894 + 5.19635I 0
u = 0.927914 0.522270I
a = 0.693785 0.874215I
b = 0.21260 1.64706I
1.22894 5.19635I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.202202 + 0.855913I
a = 0.634237 1.070540I
b = 0.589135 + 0.465773I
2.01656 + 2.69465I 0
u = 0.202202 0.855913I
a = 0.634237 + 1.070540I
b = 0.589135 0.465773I
2.01656 2.69465I 0
u = 0.706681 + 0.907609I
a = 0.680830 0.663324I
b = 0.702951 + 0.508789I
2.73261 + 2.20022I 0
u = 0.706681 0.907609I
a = 0.680830 + 0.663324I
b = 0.702951 0.508789I
2.73261 2.20022I 0
u = 1.163070 + 0.118652I
a = 0.147695 + 0.083721I
b = 0.503768 + 0.861204I
6.57959 + 2.03147I 0
u = 1.163070 0.118652I
a = 0.147695 0.083721I
b = 0.503768 0.861204I
6.57959 2.03147I 0
u = 1.132900 + 0.423824I
a = 0.1080040 0.0408760I
b = 0.502102 0.864389I
2.52083 + 1.44860I 0
u = 1.132900 0.423824I
a = 0.1080040 + 0.0408760I
b = 0.502102 + 0.864389I
2.52083 1.44860I 0
u = 0.613710 + 0.275012I
a = 0.577920 + 1.169060I
b = 0.605409 0.442067I
0.68088 + 1.79356I 3.58716 3.49376I
u = 0.613710 0.275012I
a = 0.577920 1.169060I
b = 0.605409 + 0.442067I
0.68088 1.79356I 3.58716 + 3.49376I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.112698 + 0.641118I
a = 1.14677 + 1.24755I
b = 0.104986 0.459963I
0.20219 + 1.76036I 2.87139 4.54013I
u = 0.112698 0.641118I
a = 1.14677 1.24755I
b = 0.104986 + 0.459963I
0.20219 1.76036I 2.87139 + 4.54013I
u = 1.34164 + 0.50804I
a = 0.0413867 0.0772033I
b = 0.500717 + 0.867698I
5.31571 6.25637I 0
u = 1.34164 0.50804I
a = 0.0413867 + 0.0772033I
b = 0.500717 0.867698I
5.31571 + 6.25637I 0
u = 0.215717 + 0.466050I
a = 0.850318 + 0.391504I
b = 0.051763 0.414571I
0.204392 + 1.155360I 2.58460 5.42114I
u = 0.215717 0.466050I
a = 0.850318 0.391504I
b = 0.051763 + 0.414571I
0.204392 1.155360I 2.58460 + 5.42114I
u = 0.316089 + 0.016627I
a = 2.59472 + 1.52273I
b = 0.723432 + 0.374751I
5.01306 + 2.02127I 6.01042 2.94322I
u = 0.316089 0.016627I
a = 2.59472 1.52273I
b = 0.723432 0.374751I
5.01306 2.02127I 6.01042 + 2.94322I
u = 0.139498 + 0.148897I
a = 0.77014 3.28112I
b = 0.935346 + 0.418012I
2.35280 1.42837I 5.23226 0.77346I
u = 0.139498 0.148897I
a = 0.77014 + 3.28112I
b = 0.935346 0.418012I
2.35280 + 1.42837I 5.23226 + 0.77346I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.072363 + 0.140302I
a = 3.68001 + 2.57740I
b = 1.276320 0.323994I
1.40150 2.62563I 2.39243 + 7.68960I
u = 0.072363 0.140302I
a = 3.68001 2.57740I
b = 1.276320 + 0.323994I
1.40150 + 2.62563I 2.39243 7.68960I
u = 0.082246 + 0.130921I
a = 7.59312 + 2.53392I
b = 0.915246 0.256960I
0.28851 + 4.07641I 2.15744 4.09621I
u = 0.082246 0.130921I
a = 7.59312 2.53392I
b = 0.915246 + 0.256960I
0.28851 4.07641I 2.15744 + 4.09621I
u = 0.1302840 + 0.0411333I
a = 5.89662 7.40372I
b = 1.210170 0.117689I
2.24712 + 9.22197I 1.03586 7.84449I
u = 0.1302840 0.0411333I
a = 5.89662 + 7.40372I
b = 1.210170 + 0.117689I
2.24712 9.22197I 1.03586 + 7.84449I
u = 0.25501 + 2.08526I
a = 0.853720 + 0.095240I
b = 1.69702 + 0.80685I
8.43308 + 5.72964I 0
u = 0.25501 2.08526I
a = 0.853720 0.095240I
b = 1.69702 0.80685I
8.43308 5.72964I 0
u = 0.10045 + 2.09972I
a = 0.851816 + 0.083179I
b = 2.28410 0.51852I
9.71957 + 1.80340I 0
u = 0.10045 2.09972I
a = 0.851816 0.083179I
b = 2.28410 + 0.51852I
9.71957 1.80340I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.05252 + 2.17046I
a = 0.740950 + 0.004758I
b = 1.232640 + 0.312711I
5.97993 0.81701I 0
u = 0.05252 2.17046I
a = 0.740950 0.004758I
b = 1.232640 0.312711I
5.97993 + 0.81701I 0
u = 0.26686 + 2.16526I
a = 0.800876 0.131026I
b = 1.81818 0.56412I
10.20810 0.71624I 0
u = 0.26686 2.16526I
a = 0.800876 + 0.131026I
b = 1.81818 + 0.56412I
10.20810 + 0.71624I 0
u = 0.15055 + 2.20291I
a = 0.825604 0.038418I
b = 2.35720 + 0.13376I
10.67330 + 4.49403I 0
u = 0.15055 2.20291I
a = 0.825604 + 0.038418I
b = 2.35720 0.13376I
10.67330 4.49403I 0
u = 0.30268 + 2.31181I
a = 0.721619 + 0.003544I
b = 1.89927 + 0.30757I
2.64098 5.70905I 0
u = 0.30268 2.31181I
a = 0.721619 0.003544I
b = 1.89927 0.30757I
2.64098 + 5.70905I 0
u = 0.34239 + 2.31494I
a = 0.684662 0.216298I
b = 2.00993 0.07441I
9.93307 + 1.69714I 0
u = 0.34239 2.31494I
a = 0.684662 + 0.216298I
b = 2.00993 + 0.07441I
9.93307 1.69714I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.22218 + 2.35542I
a = 0.755369 + 0.052860I
b = 2.13863 0.54775I
8.46254 + 9.07820I 0
u = 0.22218 2.35542I
a = 0.755369 0.052860I
b = 2.13863 + 0.54775I
8.46254 9.07820I 0
u = 0.39552 + 2.35080I
a = 0.640216 + 0.260076I
b = 2.06046 0.12425I
7.93450 6.76711I 0
u = 0.39552 2.35080I
a = 0.640216 0.260076I
b = 2.06046 + 0.12425I
7.93450 + 6.76711I 0
u = 0.22078 + 2.39023I
a = 0.737856 0.080606I
b = 2.06346 + 0.70700I
5.9812 14.7941I 0
u = 0.22078 2.39023I
a = 0.737856 + 0.080606I
b = 2.06346 0.70700I
5.9812 + 14.7941I 0
u = 0.22242 + 2.48174I
a = 0.583026 + 0.113235I
b = 1.66663 0.04894I
5.45632 + 0.40195I 0
u = 0.22242 2.48174I
a = 0.583026 0.113235I
b = 1.66663 + 0.04894I
5.45632 0.40195I 0
10
II.
I
u
2
= h−6.07×10
19
u
19
+9.41×10
19
u
18
+· · ·+3.15×10
19
b+6.57×10
19
, 3.61×
10
19
u
19
9.02×10
19
u
18
+· · ·+3.15×10
19
a2.09×10
20
, u
20
u
19
+· · ·+8u+1i
(i) Arc colorings
a
5
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
11
=
1.14862u
19
+ 2.86561u
18
+ ··· + 52.5661u + 6.64996
1.92794u
19
2.99184u
18
+ ··· 2.72601u 2.08905
a
9
=
4.30867u
19
5.11776u
18
+ ··· + 67.3450u + 7.63162
0.169783u
19
0.679356u
18
+ ··· 23.1178u 2.73782
a
12
=
0.779322u
19
0.126232u
18
+ ··· + 49.8401u + 4.56091
1.92794u
19
2.99184u
18
+ ··· 2.72601u 2.08905
a
4
=
1.08905u
19
0.838895u
18
+ ··· 59.9916u 5.98639
1.87298u
19
2.05692u
18
+ ··· + 45.3503u + 6.23661
a
3
=
0.783934u
19
2.89581u
18
+ ··· 14.6413u + 0.250227
1.87298u
19
2.05692u
18
+ ··· + 45.3503u + 6.23661
a
10
=
1.14862u
19
+ 2.86561u
18
+ ··· + 52.5661u + 6.64996
1.85691u
19
2.41990u
18
+ ··· + 9.86126u 0.372063
a
1
=
5.08799u
19
5.24399u
18
+ ··· + 117.185u + 12.1925
1.91394u
19
2.98258u
18
+ ··· 4.89004u 1.89814
a
2
=
3.98051u
19
5.59567u
18
+ ··· + 17.9946u + 1.21621
0.195657u
19
0.183933u
18
+ ··· + 10.8593u + 2.67733
a
6
=
0.627937u
19
2.48485u
18
+ ··· 44.1527u 4.83777
0.804343u
19
0.816067u
18
+ ··· + 28.1407u + 4.32267
(ii) Obstruction class = 1
(iii) Cusp Shapes =
86912471356230966919
31468322960334269681
u
19
121955116805407308520
31468322960334269681
u
18
+ ···
77257384023725289987
31468322960334269681
u
180061111953374962015
31468322960334269681
11
(iv) u-Polynomials at the component
12
Crossings u-Polynomials at each crossing
c
1
u
20
11u
19
+ ··· 7u + 1
c
2
u
20
u
19
+ ··· u + 1
c
3
u
20
+ u
19
+ ··· + u + 1
c
4
u
20
+ 11u
18
+ ··· + 3u + 1
c
5
u
20
+ 2u
19
+ ··· 3u + 1
c
6
u
20
+ u
19
+ ··· + u + 1
c
7
u
20
u
19
+ ··· + 8u + 1
c
8
u
20
+ 6u
19
+ ··· 2u + 1
c
9
u
20
+ 5u
19
+ ··· 2u + 1
c
10
u
20
+ 11u
18
+ ··· 3u + 1
c
11
u
20
+ 2u
19
+ ··· 5u + 1
c
12
u
20
5u
19
+ ··· + 2u + 1
13
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
+ 3y
19
+ ··· 9y + 1
c
2
, c
6
y
20
+ 11y
19
+ ··· + 7y + 1
c
3
y
20
5y
19
+ ··· + 11y + 1
c
4
, c
10
y
20
+ 22y
19
+ ··· + 27y + 1
c
5
y
20
14y
19
+ ··· + 9y + 1
c
7
y
20
+ 9y
19
+ ··· + 14y + 1
c
8
y
20
14y
19
+ ··· + 10y + 1
c
9
, c
12
y
20
+ 9y
19
+ ··· 6y + 1
c
11
y
20
6y
19
+ ··· + 9y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.654375 + 0.832677I
a = 0.503183 0.846050I
b = 0.194792 0.729886I
2.71864 1.45971I 0.89646 + 2.17815I
u = 0.654375 0.832677I
a = 0.503183 + 0.846050I
b = 0.194792 + 0.729886I
2.71864 + 1.45971I 0.89646 2.17815I
u = 1.326230 + 0.153242I
a = 0.233237 0.656743I
b = 0.470432 0.684847I
1.99836 2.67759I 0.08880 + 3.61083I
u = 1.326230 0.153242I
a = 0.233237 + 0.656743I
b = 0.470432 + 0.684847I
1.99836 + 2.67759I 0.08880 3.61083I
u = 0.283343 + 0.478254I
a = 0.479487 + 0.030100I
b = 0.958183 + 0.057779I
1.50477 + 1.79654I 1.48765 0.69459I
u = 0.283343 0.478254I
a = 0.479487 0.030100I
b = 0.958183 0.057779I
1.50477 1.79654I 1.48765 + 0.69459I
u = 0.065192 + 0.513948I
a = 2.12487 + 0.49208I
b = 0.029629 + 0.829824I
4.95539 + 3.67611I 6.05419 4.52419I
u = 0.065192 0.513948I
a = 2.12487 0.49208I
b = 0.029629 0.829824I
4.95539 3.67611I 6.05419 + 4.52419I
u = 0.388734 + 0.189482I
a = 2.19950 + 1.65173I
b = 0.172656 + 1.147900I
1.14234 + 0.98756I 2.34913 0.96839I
u = 0.388734 0.189482I
a = 2.19950 1.65173I
b = 0.172656 1.147900I
1.14234 0.98756I 2.34913 + 0.96839I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.093068 + 0.385354I
a = 2.58480 + 1.87857I
b = 0.137373 1.131910I
3.37351 + 4.07065I 4.00523 3.92466I
u = 0.093068 0.385354I
a = 2.58480 1.87857I
b = 0.137373 + 1.131910I
3.37351 4.07065I 4.00523 + 3.92466I
u = 1.51215 + 0.68020I
a = 0.028861 + 0.571314I
b = 0.338355 + 0.609590I
5.61868 0.78543I 3.44115 + 0.39623I
u = 1.51215 0.68020I
a = 0.028861 0.571314I
b = 0.338355 0.609590I
5.61868 + 0.78543I 3.44115 0.39623I
u = 1.69347 + 0.07041I
a = 0.187449 + 0.482061I
b = 0.478407 + 0.564426I
4.74636 + 7.31948I 2.74412 7.73216I
u = 1.69347 0.07041I
a = 0.187449 0.482061I
b = 0.478407 0.564426I
4.74636 7.31948I 2.74412 + 7.73216I
u = 0.00070 + 2.14683I
a = 0.831417 0.035871I
b = 2.17981 + 0.27698I
9.85332 + 2.88141I 0.90247 3.92917I
u = 0.00070 2.14683I
a = 0.831417 + 0.035871I
b = 2.17981 0.27698I
9.85332 2.88141I 0.90247 + 3.92917I
u = 0.10602 + 2.37201I
a = 0.641018 0.047557I
b = 1.325270 + 0.136830I
6.61544 1.15788I 6.48667 + 6.36754I
u = 0.10602 2.37201I
a = 0.641018 + 0.047557I
b = 1.325270 0.136830I
6.61544 + 1.15788I 6.48667 6.36754I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
20
11u
19
+ ··· 7u + 1)(u
58
+ 28u
57
+ ··· + 886u + 121)
c
2
(u
20
u
19
+ ··· u + 1)(u
58
2u
57
+ ··· 40u + 11)
c
3
(u
20
+ u
19
+ ··· + u + 1)(u
58
+ 2u
57
+ ··· 2542u + 3839)
c
4
(u
20
+ 11u
18
+ ··· + 3u + 1)(u
58
u
57
+ ··· + 10u + 1)
c
5
(u
20
+ 2u
19
+ ··· 3u + 1)(u
58
+ 3u
57
+ ··· + 60u + 88)
c
6
(u
20
+ u
19
+ ··· + u + 1)(u
58
2u
57
+ ··· 40u + 11)
c
7
(u
20
u
19
+ ··· + 8u + 1)(u
58
+ 51u
56
+ ··· 13u + 1)
c
8
(u
20
+ 6u
19
+ ··· 2u + 1)(u
58
+ 3u
57
+ ··· + 12935u + 481)
c
9
(u
20
+ 5u
19
+ ··· 2u + 1)(u
58
+ 6u
57
+ ··· + 289u + 41)
c
10
(u
20
+ 11u
18
+ ··· 3u + 1)(u
58
u
57
+ ··· + 10u + 1)
c
11
(u
20
+ 2u
19
+ ··· 5u + 1)(u
58
3u
57
+ ··· 790066u + 205619)
c
12
(u
20
5u
19
+ ··· + 2u + 1)(u
58
+ 6u
57
+ ··· + 289u + 41)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
20
+ 3y
19
+ ··· 9y + 1)(y
58
+ 12y
57
+ ··· + 130490y + 14641)
c
2
, c
6
(y
20
+ 11y
19
+ ··· + 7y + 1)(y
58
+ 28y
57
+ ··· + 886y + 121)
c
3
(y
20
5y
19
+ ··· + 11y + 1)
· (y
58
4y
57
+ ··· 237147274y + 14737921)
c
4
, c
10
(y
20
+ 22y
19
+ ··· + 27y + 1)(y
58
+ 75y
57
+ ··· 50y + 1)
c
5
(y
20
14y
19
+ ··· + 9y + 1)(y
58
21y
57
+ ··· 103568y + 7744)
c
7
(y
20
+ 9y
19
+ ··· + 14y + 1)(y
58
+ 102y
57
+ ··· 15y + 1)
c
8
(y
20
14y
19
+ ··· + 10y + 1)
· (y
58
81y
57
+ ··· + 2622113y + 231361)
c
9
, c
12
(y
20
+ 9y
19
+ ··· 6y + 1)(y
58
+ 22y
57
+ ··· + 63341y + 1681)
c
11
(y
20
6y
19
+ ··· + 9y + 1)
· (y
58
77y
57
+ ··· + 288375606396y + 42279173161)
19