12n
0284
(K12n
0284
)
A knot diagram
1
Linearized knot diagam
3 6 7 9 12 2 5 11 7 6 8 10
Solving Sequence
2,7
6 3
4,10
11 1 9 5 8 12
c
6
c
2
c
3
c
10
c
1
c
9
c
4
c
8
c
12
c
5
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−157641u
22
+ 1055893u
21
+ ··· + 43337b + 207103,
27883u
22
413880u
21
+ ··· + 86674a 184081, u
23
8u
22
+ ··· 11u + 2i
I
u
2
= hu
8
+ 3u
7
+ 6u
6
+ 7u
5
+ 6u
4
+ 3u
3
+ u
2
+ b 1,
u
12
6u
11
19u
10
40u
9
61u
8
70u
7
60u
6
37u
5
12u
4
+ 5u
3
+ 10u
2
+ a + 8u + 3,
u
13
+ 5u
12
+ 15u
11
+ 30u
10
+ 45u
9
+ 51u
8
+ 45u
7
+ 30u
6
+ 13u
5
+ u
4
5u
3
5u
2
2u 1i
I
u
3
= h2u
12
a + 29u
12
+ ··· + 2a + 35, 5u
12
a + 9u
12
+ ··· + 3a + 18,
u
13
+ 3u
12
+ 5u
11
+ 4u
10
+ 4u
9
+ 3u
8
+ u
7
4u
6
2u
5
+ u
3
+ 3u
2
+ 3u + 1i
I
u
4
= ha
3
u + a
3
a
2
u au + 4b 4a 4u + 1, a
4
+ 2a
2
u 3a
2
2au 2a 1, u
2
u + 1i
* 4 irreducible components of dim
C
= 0, with total 70 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.58 × 10
5
u
22
+ 1.06 × 10
6
u
21
+ · · · + 4.33 × 10
4
b + 2.07 ×
10
5
, 27883u
22
413880u
21
+· · · +86674a 184081, u
23
8u
22
+· · · 11u + 2i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
10
=
0.321700u
22
+ 4.77513u
21
+ ··· 26.2727u + 2.12383
3.63756u
22
24.3647u
21
+ ··· + 24.4277u 4.77890
a
11
=
0.187911u
22
+ 1.63708u
21
+ ··· 25.8401u + 2.49965
2.20154u
22
+ 13.8409u
21
+ ··· + 1.41486u 0.643399
a
1
=
u
3
u
5
+ u
3
+ u
a
9
=
3.95926u
22
+ 29.1398u
21
+ ··· 50.7004u + 6.90273
3.63756u
22
24.3647u
21
+ ··· + 24.4277u 4.77890
a
5
=
1.25086u
22
9.29017u
21
+ ··· 1.10816u + 6.18493
1.69428u
22
+ 12.2032u
21
+ ··· 15.3776u + 1.78376
a
8
=
1.06123u
22
+ 8.07276u
21
+ ··· 14.7681u 3.81472
0.492097u
22
5.85550u
21
+ ··· + 20.7596u 3.21718
a
12
=
0.802397u
22
+ 6.76237u
21
+ ··· 26.6681u + 8.35061
0.134366u
22
+ 2.76904u
21
+ ··· 9.99762u + 1.09738
(ii) Obstruction class = 1
(iii) Cusp Shapes =
52973
43337
u
22
+
121642
43337
u
21
+ ··· +
1232071
43337
u
582900
43337
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
23
+ 4u
22
+ ··· 35u 4
c
2
, c
6
u
23
8u
22
+ ··· 11u + 2
c
3
u
23
+ 8u
22
+ ··· 17339u + 16754
c
4
, c
10
u
23
+ 16u
21
+ ··· 4u 1
c
5
, c
7
u
23
8u
21
+ ··· + 5u 1
c
8
, c
11
u
23
+ 10u
22
+ ··· 29u 4
c
9
, c
12
u
23
+ 3u
22
+ ··· 10u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
23
+ 44y
22
+ ··· 1519y 16
c
2
, c
6
y
23
+ 4y
22
+ ··· 35y 4
c
3
y
23
+ 84y
22
+ ··· 4785303843y 280696516
c
4
, c
10
y
23
+ 32y
22
+ ··· + 2y 1
c
5
, c
7
y
23
16y
22
+ ··· + 33y 1
c
8
, c
11
y
23
+ 6y
22
+ ··· 575y 16
c
9
, c
12
y
23
39y
22
+ ··· 196y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.482213 + 0.920645I
a = 0.244578 0.919306I
b = 0.0382942 + 0.0881044I
1.61303 + 2.07315I 0.31329 3.51886I
u = 0.482213 0.920645I
a = 0.244578 + 0.919306I
b = 0.0382942 0.0881044I
1.61303 2.07315I 0.31329 + 3.51886I
u = 0.795198 + 0.518466I
a = 0.729958 + 0.210265I
b = 0.691674 0.467858I
0.22104 + 2.41394I 1.23274 2.49732I
u = 0.795198 0.518466I
a = 0.729958 0.210265I
b = 0.691674 + 0.467858I
0.22104 2.41394I 1.23274 + 2.49732I
u = 0.400101 + 1.050250I
a = 0.662095 + 0.548805I
b = 0.384543 1.002950I
6.34034 1.70564I 9.62352 + 2.67791I
u = 0.400101 1.050250I
a = 0.662095 0.548805I
b = 0.384543 + 1.002950I
6.34034 + 1.70564I 9.62352 2.67791I
u = 0.787767 + 0.322879I
a = 0.846615 0.478402I
b = 0.534974 0.979772I
2.52532 + 1.25135I 2.51529 0.59191I
u = 0.787767 0.322879I
a = 0.846615 + 0.478402I
b = 0.534974 + 0.979772I
2.52532 1.25135I 2.51529 + 0.59191I
u = 0.274775 + 0.733362I
a = 0.596051 + 0.164908I
b = 0.038646 0.194454I
0.352945 + 1.192290I 4.51268 5.42631I
u = 0.274775 0.733362I
a = 0.596051 0.164908I
b = 0.038646 + 0.194454I
0.352945 1.192290I 4.51268 + 5.42631I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.555047 + 1.233680I
a = 0.578619 + 0.250416I
b = 0.773467 + 0.821194I
5.25580 6.48914I 3.11761 + 2.59067I
u = 0.555047 1.233680I
a = 0.578619 0.250416I
b = 0.773467 0.821194I
5.25580 + 6.48914I 3.11761 2.59067I
u = 0.646784
a = 1.86113
b = 1.50954
2.52927 13.5670
u = 1.13690 + 0.99514I
a = 0.847752 0.965637I
b = 2.45166 0.30632I
8.67002 6.60337I 0.16824 + 3.17637I
u = 1.13690 0.99514I
a = 0.847752 + 0.965637I
b = 2.45166 + 0.30632I
8.67002 + 6.60337I 0.16824 3.17637I
u = 1.02850 + 1.11001I
a = 1.24376 0.88643I
b = 2.28163 + 0.96771I
8.2361 + 14.4853I 0.53177 7.04602I
u = 1.02850 1.11001I
a = 1.24376 + 0.88643I
b = 2.28163 0.96771I
8.2361 14.4853I 0.53177 + 7.04602I
u = 1.13613 + 1.00401I
a = 1.060840 + 0.748303I
b = 2.47675 0.32354I
10.85390 + 6.57430I 0.18173 4.98395I
u = 1.13613 1.00401I
a = 1.060840 0.748303I
b = 2.47675 + 0.32354I
10.85390 6.57430I 0.18173 + 4.98395I
u = 1.04311 + 1.14169I
a = 0.869736 + 0.998294I
b = 2.21575 0.49458I
10.38880 + 1.40736I 0.548351 + 0.550968I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.04311 1.14169I
a = 0.869736 0.998294I
b = 2.21575 + 0.49458I
10.38880 1.40736I 0.548351 0.550968I
u = 0.169482 + 0.280800I
a = 2.98105 2.07240I
b = 0.170327 + 1.076150I
3.36571 + 0.11521I 6.20379 + 0.79398I
u = 0.169482 0.280800I
a = 2.98105 + 2.07240I
b = 0.170327 1.076150I
3.36571 0.11521I 6.20379 0.79398I
7
II. I
u
2
= hu
8
+ 3u
7
+ 6u
6
+ 7u
5
+ 6u
4
+ 3u
3
+ u
2
+ b 1, u
12
6u
11
+ · · · +
a + 3, u
13
+ 5u
12
+ · · · 2u 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
10
=
u
12
+ 6u
11
+ ··· 8u 3
u
8
3u
7
6u
6
7u
5
6u
4
3u
3
u
2
+ 1
a
11
=
u
11
+ 5u
10
+ 14u
9
+ 26u
8
+ 35u
7
+ 35u
6
+ 25u
5
+ 12u
4
5u
2
5u 3
u
12
+ 4u
11
+ ··· u + 1
a
1
=
u
3
u
5
+ u
3
+ u
a
9
=
u
12
+ 6u
11
+ ··· 8u 4
u
8
3u
7
6u
6
7u
5
6u
4
3u
3
u
2
+ 1
a
5
=
u
12
+ 4u
11
+ ··· + 3u + 3
u
12
5u
11
+ ··· + 4u
2
+ 3u
a
8
=
u
12
4u
11
+ ··· + u 2
u
11
+ 5u
10
+ 14u
9
+ 25u
8
+ 32u
7
+ 29u
6
+ 19u
5
+ 8u
4
4u
2
4u 1
a
12
=
u
12
6u
11
+ ··· + 6u + 2
u
4
u
3
u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
12
+u
11
+12u
10
+42u
9
+79u
8
+107u
7
+101u
6
+71u
5
+29u
4
8u
3
24u
2
19u 11
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
5u
12
+ ··· 6u + 1
c
2
u
13
5u
12
+ ··· 2u + 1
c
3
u
13
+ 5u
12
+ ··· + 2u + 5
c
4
, c
10
u
13
+ 5u
11
+ ··· + 2u 1
c
5
, c
7
u
13
3u
11
+ ··· + 3u + 1
c
6
u
13
+ 5u
12
+ ··· 2u 1
c
8
u
13
+ 7u
12
+ ··· + 18u + 5
c
9
, c
12
u
13
3u
12
+ ··· 2u 1
c
11
u
13
7u
12
+ ··· + 18u 5
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
+ 5y
12
+ ··· + 30y 1
c
2
, c
6
y
13
+ 5y
12
+ ··· 6y 1
c
3
y
13
+ 5y
12
+ ··· 336y 25
c
4
, c
10
y
13
+ 10y
12
+ ··· 8y 1
c
5
, c
7
y
13
6y
12
+ ··· + 3y 1
c
8
, c
11
y
13
+ 3y
12
+ ··· + 124y 25
c
9
, c
12
y
13
13y
12
+ ··· + 6y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.014650 + 0.255879I
a = 0.308979 0.014833I
b = 0.725825 + 1.010700I
1.27099 3.82062I 1.40679 + 4.63835I
u = 1.014650 0.255879I
a = 0.308979 + 0.014833I
b = 0.725825 1.010700I
1.27099 + 3.82062I 1.40679 4.63835I
u = 0.197297 + 0.861440I
a = 0.401352 + 0.826342I
b = 0.709820 + 0.085882I
0.746919 + 0.991007I 3.49980 2.09278I
u = 0.197297 0.861440I
a = 0.401352 0.826342I
b = 0.709820 0.085882I
0.746919 0.991007I 3.49980 + 2.09278I
u = 0.388828 + 1.189390I
a = 0.898954 0.065194I
b = 0.527148 + 0.273002I
5.76976 7.61792I 6.66397 + 8.10409I
u = 0.388828 1.189390I
a = 0.898954 + 0.065194I
b = 0.527148 0.273002I
5.76976 + 7.61792I 6.66397 8.10409I
u = 0.490814 + 1.270180I
a = 0.514001 + 0.677479I
b = 0.053980 0.728775I
4.83122 1.66695I 3.23585 + 1.59270I
u = 0.490814 1.270180I
a = 0.514001 0.677479I
b = 0.053980 + 0.728775I
4.83122 + 1.66695I 3.23585 1.59270I
u = 0.593865
a = 2.20766
b = 1.60115
2.23989 14.6790
u = 0.054646 + 0.554847I
a = 0.16877 2.22368I
b = 0.907466 + 0.136097I
2.80544 + 5.20612I 3.31284 5.75521I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.054646 0.554847I
a = 0.16877 + 2.22368I
b = 0.907466 0.136097I
2.80544 5.20612I 3.31284 + 5.75521I
u = 1.04529 + 1.04359I
a = 1.052780 0.900847I
b = 2.20403 + 0.34853I
11.16560 3.84025I 0.45922 + 2.19131I
u = 1.04529 1.04359I
a = 1.052780 + 0.900847I
b = 2.20403 0.34853I
11.16560 + 3.84025I 0.45922 2.19131I
12
III. I
u
3
=
h2u
12
a+29u
12
+· · ·+2a+35, 5u
12
a+9u
12
+· · ·+3a+18, u
13
+3u
12
+· · ·+3u+1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
10
=
a
1
3
u
12
a
29
6
u
12
+ ···
1
3
a
35
6
a
11
=
1
3
u
12
a +
29
6
u
12
+ ··· +
4
3
a +
35
6
3u
12
13
2
u
11
+ ··· 6u
5
2
a
1
=
u
3
u
5
+ u
3
+ u
a
9
=
1
3
u
12
a +
29
6
u
12
+ ··· +
4
3
a +
35
6
1
3
u
12
a
29
6
u
12
+ ···
1
3
a
35
6
a
5
=
3u
12
a u
12
+ ···
5
2
a
9
2
11
6
u
12
a
1
3
u
12
+ ···
10
3
a
4
3
a
8
=
2
3
u
12
a
7
6
u
12
+ ··· +
5
6
a
25
6
1
3
u
12
a +
1
6
u
12
+ ···
5
6
a +
7
6
a
12
=
4.83333au
12
1.33333u
12
+ ··· 5.83333a 4.33333
1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 16u
12
+ 41u
11
+ 60u
10
+ 32u
9
+ 40u
8
+ 24u
7
u
6
68u
5
7u
4
+ 11u
3
+ 14u
2
+ 40u + 27
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
13
+ u
12
+ ··· + 3u 1)
2
c
2
, c
6
(u
13
+ 3u
12
+ ··· + 3u + 1)
2
c
3
(u
13
3u
12
+ ··· + 105u + 17)
2
c
4
, c
10
u
26
+ u
25
+ ··· 1376u + 892
c
5
, c
7
u
26
+ u
25
+ ··· 16u + 4
c
8
, c
11
(u
13
3u
12
+ ··· + 7u 3)
2
c
9
, c
12
u
26
+ 3u
25
+ ··· + 23978u + 3433
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
13
+ 17y
12
+ ··· + 3y 1)
2
c
2
, c
6
(y
13
+ y
12
+ ··· + 3y 1)
2
c
3
(y
13
+ 33y
12
+ ··· 4989y 289)
2
c
4
, c
10
y
26
+ 37y
25
+ ··· + 7465488y + 795664
c
5
, c
7
y
26
3y
25
+ ··· + 80y + 16
c
8
, c
11
(y
13
+ 7y
12
+ ··· 47y 9)
2
c
9
, c
12
y
26
37y
25
+ ··· + 8143700y + 11785489
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.857473 + 0.279621I
a = 1.146450 + 0.491555I
b = 0.796662 + 0.029542I
0.57111 + 2.96599I 3.40376 4.94078I
u = 0.857473 + 0.279621I
a = 0.374853 0.402281I
b = 0.42392 1.83114I
0.57111 + 2.96599I 3.40376 4.94078I
u = 0.857473 0.279621I
a = 1.146450 0.491555I
b = 0.796662 0.029542I
0.57111 2.96599I 3.40376 + 4.94078I
u = 0.857473 0.279621I
a = 0.374853 + 0.402281I
b = 0.42392 + 1.83114I
0.57111 2.96599I 3.40376 + 4.94078I
u = 0.088692 + 0.874872I
a = 0.079744 0.117957I
b = 1.001070 + 0.773133I
4.13282 + 4.47957I 8.13699 5.02939I
u = 0.088692 + 0.874872I
a = 1.48441 + 2.01611I
b = 0.206476 0.844754I
4.13282 + 4.47957I 8.13699 5.02939I
u = 0.088692 0.874872I
a = 0.079744 + 0.117957I
b = 1.001070 0.773133I
4.13282 4.47957I 8.13699 + 5.02939I
u = 0.088692 0.874872I
a = 1.48441 2.01611I
b = 0.206476 + 0.844754I
4.13282 4.47957I 8.13699 + 5.02939I
u = 0.489695 + 1.024820I
a = 0.058476 0.727827I
b = 0.304979 0.504799I
1.86631 + 1.44615I 0.486202 0.156157I
u = 0.489695 + 1.024820I
a = 1.282050 0.518428I
b = 0.296411 + 1.051110I
1.86631 + 1.44615I 0.486202 0.156157I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.489695 1.024820I
a = 0.058476 + 0.727827I
b = 0.304979 + 0.504799I
1.86631 1.44615I 0.486202 + 0.156157I
u = 0.489695 1.024820I
a = 1.282050 + 0.518428I
b = 0.296411 1.051110I
1.86631 1.44615I 0.486202 + 0.156157I
u = 0.561016 + 0.356757I
a = 1.63590 + 0.02743I
b = 1.88883 + 0.58490I
1.84199 6.08937I 0.96961 + 10.45336I
u = 0.561016 + 0.356757I
a = 0.60336 + 2.13477I
b = 0.573289 0.541656I
1.84199 6.08937I 0.96961 + 10.45336I
u = 0.561016 0.356757I
a = 1.63590 0.02743I
b = 1.88883 0.58490I
1.84199 + 6.08937I 0.96961 10.45336I
u = 0.561016 0.356757I
a = 0.60336 2.13477I
b = 0.573289 + 0.541656I
1.84199 + 6.08937I 0.96961 10.45336I
u = 0.621780
a = 1.76823 + 0.25312I
b = 1.361550 0.318265I
2.50154 10.0510
u = 0.621780
a = 1.76823 0.25312I
b = 1.361550 + 0.318265I
2.50154 10.0510
u = 1.06899 + 0.97779I
a = 0.796159 + 0.828771I
b = 1.98967 + 0.49433I
10.99100 1.55475I 0.020480 0.977759I
u = 1.06899 + 0.97779I
a = 1.29235 0.85739I
b = 2.44763 + 0.61295I
10.99100 1.55475I 0.020480 0.977759I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.06899 0.97779I
a = 0.796159 0.828771I
b = 1.98967 0.49433I
10.99100 + 1.55475I 0.020480 + 0.977759I
u = 1.06899 0.97779I
a = 1.29235 + 0.85739I
b = 2.44763 0.61295I
10.99100 + 1.55475I 0.020480 + 0.977759I
u = 0.99496 + 1.07074I
a = 1.26903 + 0.78838I
b = 1.73331 0.96676I
10.65510 6.00257I 0.76853 + 5.30238I
u = 0.99496 + 1.07074I
a = 0.95131 1.16272I
b = 2.46477 + 0.05337I
10.65510 6.00257I 0.76853 + 5.30238I
u = 0.99496 1.07074I
a = 1.26903 0.78838I
b = 1.73331 + 0.96676I
10.65510 + 6.00257I 0.76853 5.30238I
u = 0.99496 1.07074I
a = 0.95131 + 1.16272I
b = 2.46477 0.05337I
10.65510 + 6.00257I 0.76853 5.30238I
18
IV. I
u
4
=
ha
3
u+a
3
a
2
uau+4b4a4u+1, a
4
+2a
2
u3a
2
2au2a1, u
2
u+1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u 1
a
3
=
u
u 1
a
4
=
1
u 1
a
10
=
a
1
4
a
3
u +
1
4
a
2
u + ··· + a
1
4
a
11
=
1
4
a
3
u
1
4
a
2
u + ··· a +
1
4
1
4
a
2
u
7
4
au + ··· +
9
4
a +
1
2
a
1
=
1
0
a
9
=
1
4
a
3
u
1
4
a
2
u + ··· +
1
4
a
3
+
1
4
1
4
a
3
u +
1
4
a
2
u + ··· + a
1
4
a
5
=
1
4
a
3
u a
2
u + ··· +
5
4
a +
7
4
1
4
a
2
u +
1
4
au + ···
3
4
a
3
2
a
8
=
1
2
a
2
u +
1
2
au + ···
1
2
a 1
1
2
a
2
u
1
2
au + ··· +
3
2
a + 2
a
12
=
1
4
a
3
u
1
2
a
2
u + ··· +
1
4
a
3
4
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 4
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
(u
2
u + 1)
4
c
2
(u
2
+ u + 1)
4
c
4
, c
10
u
8
+ 3u
6
+ 2u
5
+ 7u
4
+ 6u
3
+ 10u
2
+ 4u + 4
c
5
, c
7
u
8
+ 2u
7
u
6
4u
5
+ 3u
4
+ 6u
3
6u
2
4u + 4
c
8
, c
9
, c
11
c
12
(u
2
+ 1)
4
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
(y
2
+ y + 1)
4
c
4
, c
10
y
8
+ 6y
7
+ 23y
6
+ 58y
5
+ 93y
4
+ 112y
3
+ 108y
2
+ 64y + 16
c
5
, c
7
y
8
6y
7
+ 23y
6
58y
5
+ 93y
4
112y
3
+ 108y
2
64y + 16
c
8
, c
9
, c
11
c
12
(y + 1)
8
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.201767 1.028230I
b = 1.000000I
3.28987 + 2.02988I 6.00000 3.46410I
u = 0.500000 + 0.866025I
a = 0.204148 + 0.171012I
b = 1.000000I
3.28987 + 2.02988I 6.00000 3.46410I
u = 0.500000 + 0.866025I
a = 1.53028 + 1.02823I
b = 1.000000I
3.28987 + 2.02988I 6.00000 3.46410I
u = 0.500000 + 0.866025I
a = 1.93620 0.17101I
b = 1.000000I
3.28987 + 2.02988I 6.00000 3.46410I
u = 0.500000 0.866025I
a = 0.201767 + 1.028230I
b = 1.000000I
3.28987 2.02988I 6.00000 + 3.46410I
u = 0.500000 0.866025I
a = 0.204148 0.171012I
b = 1.000000I
3.28987 2.02988I 6.00000 + 3.46410I
u = 0.500000 0.866025I
a = 1.53028 1.02823I
b = 1.000000I
3.28987 2.02988I 6.00000 + 3.46410I
u = 0.500000 0.866025I
a = 1.93620 + 0.17101I
b = 1.000000I
3.28987 2.02988I 6.00000 + 3.46410I
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
4
)(u
13
5u
12
+ ··· 6u + 1)(u
13
+ u
12
+ ··· + 3u 1)
2
· (u
23
+ 4u
22
+ ··· 35u 4)
c
2
((u
2
+ u + 1)
4
)(u
13
5u
12
+ ··· 2u + 1)(u
13
+ 3u
12
+ ··· + 3u + 1)
2
· (u
23
8u
22
+ ··· 11u + 2)
c
3
((u
2
u + 1)
4
)(u
13
3u
12
+ ··· + 105u + 17)
2
· (u
13
+ 5u
12
+ ··· + 2u + 5)(u
23
+ 8u
22
+ ··· 17339u + 16754)
c
4
, c
10
(u
8
+ 3u
6
+ ··· + 4u + 4)(u
13
+ 5u
11
+ ··· + 2u 1)
· (u
23
+ 16u
21
+ ··· 4u 1)(u
26
+ u
25
+ ··· 1376u + 892)
c
5
, c
7
(u
8
+ 2u
7
u
6
4u
5
+ 3u
4
+ 6u
3
6u
2
4u + 4)
· (u
13
3u
11
+ ··· + 3u + 1)(u
23
8u
21
+ ··· + 5u 1)
· (u
26
+ u
25
+ ··· 16u + 4)
c
6
((u
2
u + 1)
4
)(u
13
+ 3u
12
+ ··· + 3u + 1)
2
(u
13
+ 5u
12
+ ··· 2u 1)
· (u
23
8u
22
+ ··· 11u + 2)
c
8
((u
2
+ 1)
4
)(u
13
3u
12
+ ··· + 7u 3)
2
(u
13
+ 7u
12
+ ··· + 18u + 5)
· (u
23
+ 10u
22
+ ··· 29u 4)
c
9
, c
12
((u
2
+ 1)
4
)(u
13
3u
12
+ ··· 2u 1)(u
23
+ 3u
22
+ ··· 10u 1)
· (u
26
+ 3u
25
+ ··· + 23978u + 3433)
c
11
((u
2
+ 1)
4
)(u
13
7u
12
+ ··· + 18u 5)(u
13
3u
12
+ ··· + 7u 3)
2
· (u
23
+ 10u
22
+ ··· 29u 4)
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
4
)(y
13
+ 5y
12
+ ··· + 30y 1)
· ((y
13
+ 17y
12
+ ··· + 3y 1)
2
)(y
23
+ 44y
22
+ ··· 1519y 16)
c
2
, c
6
((y
2
+ y + 1)
4
)(y
13
+ y
12
+ ··· + 3y 1)
2
(y
13
+ 5y
12
+ ··· 6y 1)
· (y
23
+ 4y
22
+ ··· 35y 4)
c
3
((y
2
+ y + 1)
4
)(y
13
+ 5y
12
+ ··· 336y 25)
· (y
13
+ 33y
12
+ ··· 4989y 289)
2
· (y
23
+ 84y
22
+ ··· 4785303843y 280696516)
c
4
, c
10
(y
8
+ 6y
7
+ 23y
6
+ 58y
5
+ 93y
4
+ 112y
3
+ 108y
2
+ 64y + 16)
· (y
13
+ 10y
12
+ ··· 8y 1)(y
23
+ 32y
22
+ ··· + 2y 1)
· (y
26
+ 37y
25
+ ··· + 7465488y + 795664)
c
5
, c
7
(y
8
6y
7
+ 23y
6
58y
5
+ 93y
4
112y
3
+ 108y
2
64y + 16)
· (y
13
6y
12
+ ··· + 3y 1)(y
23
16y
22
+ ··· + 33y 1)
· (y
26
3y
25
+ ··· + 80y + 16)
c
8
, c
11
((y + 1)
8
)(y
13
+ 3y
12
+ ··· + 124y 25)(y
13
+ 7y
12
+ ··· 47y 9)
2
· (y
23
+ 6y
22
+ ··· 575y 16)
c
9
, c
12
((y + 1)
8
)(y
13
13y
12
+ ··· + 6y 1)(y
23
39y
22
+ ··· 196y 1)
· (y
26
37y
25
+ ··· + 8143700y + 11785489)
24