12n
0286
(K12n
0286
)
A knot diagram
1
Linearized knot diagam
3 6 7 9 11 2 5 12 7 1 9 5
Solving Sequence
5,7 1,8
12 9 10 4 3 2 6 11
c
7
c
12
c
8
c
9
c
4
c
3
c
1
c
6
c
11
c
2
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.30879 × 10
95
u
27
4.77843 × 10
95
u
26
+ ··· + 2.74748 × 10
100
b + 7.48326 × 10
100
,
3.53819 × 10
99
u
27
+ 1.05291 × 10
100
u
26
+ ··· + 2.89208 × 10
105
a 7.68762 × 10
105
,
u
28
+ u
27
+ ··· + 29042u + 105263i
I
u
2
= h−597082u
11
+ 1807096u
10
+ ··· + 894777b + 933761,
3081635u
11
+ 7464402u
10
+ ··· + 894777a 1553044,
u
12
2u
11
2u
10
+ 10u
9
10u
8
22u
7
+ 45u
6
+ 78u
5
+ 82u
4
+ 52u
3
+ 22u
2
+ 6u + 1i
I
u
3
= hb, a 1, u
4
+ u
3
+ 2u
2
+ 2u + 1i
I
u
4
= hb, a 1, u
2
u + 1i
* 4 irreducible components of dim
C
= 0, with total 46 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2.31 × 10
95
u
27
4.78 × 10
95
u
26
+ · · · + 2.75 × 10
100
b + 7.48 ×
10
100
, 3.54 × 10
99
u
27
+ 1.05 × 10
100
u
26
+ · · · + 2.89 × 10
105
a 7.69 ×
10
105
, u
28
+ u
27
+ · · · + 29042u + 105263i
(i) Arc colorings
a
5
=
0
u
a
7
=
1
0
a
1
=
1.22341 × 10
6
u
27
3.64067 × 10
6
u
26
+ ··· + 1.61930u + 2.65817
8.40330 × 10
6
u
27
+ 0.0000173921u
26
+ ··· 1.76837u 2.72368
a
8
=
1
u
2
a
12
=
1.22341 × 10
6
u
27
3.64067 × 10
6
u
26
+ ··· + 1.61930u + 2.65817
8.28315 × 10
6
u
27
+ 0.0000219622u
26
+ ··· 1.56939u 2.46924
a
9
=
2.12062 × 10
6
u
27
+ 0.0000167463u
26
+ ··· 1.35559u 0.0779815
8.91847 × 10
6
u
27
+ 6.73686 × 10
6
u
26
+ ··· 0.963436u 1.82371
a
10
=
0.0000110391u
27
+ 0.0000234832u
26
+ ··· 2.31902u 1.90169
8.91847 × 10
6
u
27
+ 6.73686 × 10
6
u
26
+ ··· 0.963436u 1.82371
a
4
=
0.0000405549u
27
+ 0.0000479060u
26
+ ··· 5.29456u 0.938872
0.0000209981u
27
0.0000223788u
26
+ ··· + 0.490410u 0.198573
a
3
=
0.0000195568u
27
+ 0.0000255272u
26
+ ··· 4.80415u 1.13744
0.0000209981u
27
0.0000223788u
26
+ ··· + 0.490410u 0.198573
a
2
=
2.70625 × 10
6
u
27
0.0000166750u
26
+ ··· + 3.86512u + 0.922256
0.0000108644u
27
+ 0.0000140068u
26
+ ··· 0.974007u + 1.33386
a
6
=
0.0000225051u
27
0.0000303714u
26
+ ··· + 5.43569u + 0.658137
0.0000146235u
27
+ 0.0000153805u
26
+ ··· 0.424743u + 0.764753
a
11
=
5.66037 × 10
6
u
27
+ 0.0000117298u
26
+ ··· 1.06635u 2.99223
6.60870 × 10
6
u
27
+ 0.0000101990u
26
+ ··· 0.224821u + 1.16081
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0000493674u
27
0.0000112265u
26
+ ···+ 11.2065u + 0.643499
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
28
+ 12u
27
+ ··· + 19u + 4
c
2
, c
6
u
28
+ 2u
27
+ ··· + 5u + 2
c
3
u
28
2u
27
+ ··· + 64u + 16
c
4
u
28
+ u
27
+ ··· 122u + 17
c
5
u
28
+ u
27
+ ··· 68u + 17
c
7
u
28
+ u
27
+ ··· + 29042u + 105263
c
8
, c
11
u
28
5u
27
+ ··· + 613u + 1274
c
9
u
28
+ 13u
27
+ ··· 12374u + 2437
c
10
u
28
7u
27
+ ··· + 1306u + 37
c
12
u
28
3u
27
+ ··· + 180u + 73
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
28
+ 8y
27
+ ··· + 191y + 16
c
2
, c
6
y
28
+ 12y
27
+ ··· + 19y + 4
c
3
y
28
+ 4y
27
+ ··· + 256y + 256
c
4
y
28
+ 49y
27
+ ··· 4718y + 289
c
5
y
28
3y
27
+ ··· 1326y + 289
c
7
y
28
+ 89y
27
+ ··· 103896967394y + 11080299169
c
8
, c
11
y
28
+ 51y
27
+ ··· + 22472147y + 1623076
c
9
y
28
61y
27
+ ··· 43826174y + 5938969
c
10
y
28
+ 41y
27
+ ··· 885642y + 1369
c
12
y
28
69y
27
+ ··· + 39870y + 5329
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.121690 + 0.166562I
a = 0.309380 + 0.530304I
b = 0.595060 + 0.738659I
2.29476 5.76614I 7.02724 + 7.83201I
u = 1.121690 0.166562I
a = 0.309380 0.530304I
b = 0.595060 0.738659I
2.29476 + 5.76614I 7.02724 7.83201I
u = 0.500208 + 0.695651I
a = 0.484337 0.272007I
b = 0.109132 0.472868I
0.024558 + 1.375320I 0.33642 5.32848I
u = 0.500208 0.695651I
a = 0.484337 + 0.272007I
b = 0.109132 + 0.472868I
0.024558 1.375320I 0.33642 + 5.32848I
u = 0.723454 + 0.279934I
a = 0.021317 0.702292I
b = 0.371378 0.564796I
0.40304 + 1.51323I 3.09504 4.74756I
u = 0.723454 0.279934I
a = 0.021317 + 0.702292I
b = 0.371378 + 0.564796I
0.40304 1.51323I 3.09504 + 4.74756I
u = 0.600783 + 0.435618I
a = 0.863994 0.714884I
b = 0.764412 0.323762I
3.61300 0.81317I 11.74702 + 0.23139I
u = 0.600783 0.435618I
a = 0.863994 + 0.714884I
b = 0.764412 + 0.323762I
3.61300 + 0.81317I 11.74702 0.23139I
u = 0.647360 + 0.238923I
a = 0.876544 0.656944I
b = 0.330900 + 1.274360I
5.75419 1.55004I 3.99662 + 0.73447I
u = 0.647360 0.238923I
a = 0.876544 + 0.656944I
b = 0.330900 1.274360I
5.75419 + 1.55004I 3.99662 0.73447I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.055570 + 0.863909I
a = 0.525304 0.025593I
b = 0.600723 0.856166I
0.042186 + 1.135200I 1.07637 1.79124I
u = 1.055570 0.863909I
a = 0.525304 + 0.025593I
b = 0.600723 + 0.856166I
0.042186 1.135200I 1.07637 + 1.79124I
u = 0.501357 + 0.390582I
a = 0.349177 + 0.948601I
b = 0.232725 1.265600I
4.40104 + 6.85882I 1.45906 6.07740I
u = 0.501357 0.390582I
a = 0.349177 0.948601I
b = 0.232725 + 1.265600I
4.40104 6.85882I 1.45906 + 6.07740I
u = 1.41576 + 0.06600I
a = 0.768140 + 0.147819I
b = 0.65731 + 1.30176I
4.65876 + 1.17367I 4.17772 0.51764I
u = 1.41576 0.06600I
a = 0.768140 0.147819I
b = 0.65731 1.30176I
4.65876 1.17367I 4.17772 + 0.51764I
u = 1.94268 + 0.04442I
a = 0.638810 0.235824I
b = 0.83183 1.35611I
2.41032 6.19363I 1.11878 + 5.14377I
u = 1.94268 0.04442I
a = 0.638810 + 0.235824I
b = 0.83183 + 1.35611I
2.41032 + 6.19363I 1.11878 5.14377I
u = 0.09793 + 2.80940I
a = 0.136557 0.869531I
b = 0.31138 1.92352I
15.5072 + 3.1427I 0
u = 0.09793 2.80940I
a = 0.136557 + 0.869531I
b = 0.31138 + 1.92352I
15.5072 3.1427I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.07521 + 3.00511I
a = 0.107635 + 0.836138I
b = 0.29648 + 1.95384I
17.1357 + 2.5929I 0
u = 0.07521 3.00511I
a = 0.107635 0.836138I
b = 0.29648 1.95384I
17.1357 2.5929I 0
u = 0.39997 + 3.28123I
a = 0.128139 0.754642I
b = 0.33448 2.02071I
10.62630 4.32257I 0
u = 0.39997 3.28123I
a = 0.128139 + 0.754642I
b = 0.33448 + 2.02071I
10.62630 + 4.32257I 0
u = 0.08895 + 3.46874I
a = 0.063138 + 0.756807I
b = 0.26759 + 2.03266I
16.6423 + 6.6674I 0
u = 0.08895 3.46874I
a = 0.063138 0.756807I
b = 0.26759 2.03266I
16.6423 6.6674I 0
u = 0.10393 + 3.63119I
a = 0.052461 0.730571I
b = 0.25830 2.06254I
14.6448 12.3104I 0
u = 0.10393 3.63119I
a = 0.052461 + 0.730571I
b = 0.25830 + 2.06254I
14.6448 + 12.3104I 0
7
II.
I
u
2
= h−5.97 × 10
5
u
11
+ 1.81 × 10
6
u
10
+ · · · + 8.95 × 10
5
b + 9.34 × 10
5
, 3.08 ×
10
6
u
11
+7.46×10
6
u
10
+· · · +8.95×10
5
a1.55×10
6
, u
12
2u
11
+· · · +6u +1i
(i) Arc colorings
a
5
=
0
u
a
7
=
1
0
a
1
=
3.44403u
11
8.34219u
10
+ ··· + 18.7046u + 1.73568
0.667297u
11
2.01960u
10
+ ··· 4.48583u 1.04357
a
8
=
1
u
2
a
12
=
3.44403u
11
8.34219u
10
+ ··· + 18.7046u + 1.73568
0.878181u
11
2.42594u
10
+ ··· + 0.794990u + 0.410573
a
9
=
2.27082u
11
4.73048u
10
+ ··· + 28.1706u + 3.21957
0.667297u
11
2.01960u
10
+ ··· 4.48583u 2.04357
a
10
=
2.93811u
11
6.75008u
10
+ ··· + 23.6848u + 1.17600
0.667297u
11
2.01960u
10
+ ··· 4.48583u 2.04357
a
4
=
u
11
2u
10
+ ··· + 22u + 6
1.45414u
11
3.11917u
10
+ ··· + 19.9285u + 3.44403
a
3
=
2.45414u
11
5.11917u
10
+ ··· + 41.9285u + 9.44403
1.45414u
11
3.11917u
10
+ ··· + 19.9285u + 3.44403
a
2
=
0.230870u
11
0.441754u
10
+ ··· + 7.11887u + 3.22327
0.230870u
11
0.441754u
10
+ ··· + 7.11887u + 2.22327
a
6
=
u
11
2u
10
+ ··· + 22u + 6
0.769130u
11
1.55825u
10
+ ··· + 14.8811u + 2.77673
a
11
=
2.27082u
11
4.73048u
10
+ ··· + 28.1706u + 3.21957
1.00165u
11
2.54029u
10
+ ··· + 1.93274u 0.778272
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2135288
894777
u
11
2175584
298259
u
10
+ ···
5146736
298259
u
4858220
894777
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
c
2
, c
6
, c
8
c
11
u
12
+ 3u
10
+ 5u
8
+ 4u
6
+ 2u
4
+ u
2
+ 1
c
3
u
12
u
10
+ 5u
8
+ 6u
4
3u
2
+ 1
c
4
, c
5
(u
2
+ 1)
6
c
7
u
12
2u
11
+ ··· + 6u + 1
c
9
u
12
12u
11
+ ··· 116u + 17
c
10
u
12
6u
11
+ ··· + 2u + 1
c
12
u
12
2u
11
+ ··· 56u + 17
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
c
2
, c
6
, c
8
c
11
(y
6
+ 3y
5
+ 5y
4
+ 4y
3
+ 2y
2
+ y + 1)
2
c
3
(y
6
y
5
+ 5y
4
+ 6y
2
3y + 1)
2
c
4
, c
5
(y + 1)
12
c
7
y
12
8y
11
+ ··· + 8y + 1
c
9
y
12
6y
11
+ ··· + 620y + 289
c
10
y
12
+ 8y
11
+ ··· 8y + 1
c
12
y
12
+ 6y
11
+ ··· 620y + 289
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.140919 + 0.593678I
a = 0.372841 0.809839I
b = 0.664531 + 0.428243I
1.89061 + 0.92430I 5.71672 0.79423I
u = 0.140919 0.593678I
a = 0.372841 + 0.809839I
b = 0.664531 0.428243I
1.89061 0.92430I 5.71672 + 0.79423I
u = 0.409813 + 0.212587I
a = 1.22433 + 2.35408I
b = 0.295542 + 1.002190I
1.89061 0.92430I 1.71672 + 0.79423I
u = 0.409813 0.212587I
a = 1.22433 2.35408I
b = 0.295542 1.002190I
1.89061 + 0.92430I 1.71672 0.79423I
u = 0.126193 + 0.399916I
a = 1.77409 2.12563I
b = 0.558752 1.073950I
5.69302I 2.00000 5.51057I
u = 0.126193 0.399916I
a = 1.77409 + 2.12563I
b = 0.558752 + 1.073950I
5.69302I 2.00000 + 5.51057I
u = 1.59457 + 0.37850I
a = 0.777546 0.627907I
b = 0.295542 1.002190I
1.89061 0.92430I 1.71672 + 0.79423I
u = 1.59457 0.37850I
a = 0.777546 + 0.627907I
b = 0.295542 + 1.002190I
1.89061 + 0.92430I 1.71672 0.79423I
u = 0.99741 + 1.92274I
a = 0.773186 + 0.178358I
b = 0.664531 + 0.428243I
1.89061 0.92430I 5.71672 + 0.79423I
u = 0.99741 1.92274I
a = 0.773186 0.178358I
b = 0.664531 0.428243I
1.89061 + 0.92430I 5.71672 0.79423I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 2.27409 + 0.71759I
a = 0.626193 + 0.487844I
b = 0.558752 + 1.073950I
5.69302I 2.00000 5.51057I
u = 2.27409 0.71759I
a = 0.626193 0.487844I
b = 0.558752 1.073950I
5.69302I 2.00000 + 5.51057I
12
III. I
u
3
= hb, a 1, u
4
+ u
3
+ 2u
2
+ 2u + 1i
(i) Arc colorings
a
5
=
0
u
a
7
=
1
0
a
1
=
1
0
a
8
=
1
u
2
a
12
=
1
u
2
a
9
=
1
u
2
a
10
=
u
2
+ 1
u
2
a
4
=
u
u
3
+ u
a
3
=
u
3
+ 2u
u
3
+ u
a
2
=
2u
3
u
2
3u 1
u
3
u 1
a
6
=
u
u
3
+ u
a
11
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
4u 2
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u
2
+ u + 1)
2
c
2
, c
6
(u
2
u + 1)
2
c
4
, c
5
, c
7
c
12
u
4
+ u
3
+ 2u
2
+ 2u + 1
c
8
, c
11
u
4
c
9
u
4
3u
3
+ 2u
2
+ 1
c
10
u
4
+ 3u
3
+ 2u
2
+ 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
(y
2
+ y + 1)
2
c
4
, c
5
, c
7
c
12
y
4
+ 3y
3
+ 2y
2
+ 1
c
8
, c
11
y
4
c
9
, c
10
y
4
5y
3
+ 6y
2
+ 4y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.621744 + 0.440597I
a = 1.00000
b = 0
2.02988I 0. 3.46410I
u = 0.621744 0.440597I
a = 1.00000
b = 0
2.02988I 0. + 3.46410I
u = 0.121744 + 1.306620I
a = 1.00000
b = 0
2.02988I 0. + 3.46410I
u = 0.121744 1.306620I
a = 1.00000
b = 0
2.02988I 0. 3.46410I
16
IV. I
u
4
= hb, a 1, u
2
u + 1i
(i) Arc colorings
a
5
=
0
u
a
7
=
1
0
a
1
=
1
0
a
8
=
1
u 1
a
12
=
1
u 1
a
9
=
1
u 1
a
10
=
u
u 1
a
4
=
u
u 1
a
3
=
2u 1
u 1
a
2
=
u
u
a
6
=
u
u 1
a
11
=
1
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u + 2
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
10
u
2
+ u + 1
c
2
, c
4
, c
5
c
6
, c
7
, c
9
c
12
u
2
u + 1
c
8
, c
11
u
2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
9
, c
10
c
12
y
2
+ y + 1
c
8
, c
11
y
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 0
2.02988I 0. 3.46410I
u = 0.500000 0.866025I
a = 1.00000
b = 0
2.02988I 0. + 3.46410I
20
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
+ u + 1)
3
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
· (u
28
+ 12u
27
+ ··· + 19u + 4)
c
2
, c
6
(u
2
u + 1)
3
(u
12
+ 3u
10
+ 5u
8
+ 4u
6
+ 2u
4
+ u
2
+ 1)
· (u
28
+ 2u
27
+ ··· + 5u + 2)
c
3
(u
2
+ u + 1)
3
(u
12
u
10
+ 5u
8
+ 6u
4
3u
2
+ 1)
· (u
28
2u
27
+ ··· + 64u + 16)
c
4
(u
2
+ 1)
6
(u
2
u + 1)(u
4
+ u
3
+ 2u
2
+ 2u + 1)
· (u
28
+ u
27
+ ··· 122u + 17)
c
5
((u
2
+ 1)
6
)(u
2
u + 1)(u
4
+ u
3
+ ··· + 2u + 1)(u
28
+ u
27
+ ··· 68u + 17)
c
7
(u
2
u + 1)(u
4
+ u
3
+ 2u
2
+ 2u + 1)(u
12
2u
11
+ ··· + 6u + 1)
· (u
28
+ u
27
+ ··· + 29042u + 105263)
c
8
, c
11
u
6
(u
12
+ 3u
10
+ 5u
8
+ 4u
6
+ 2u
4
+ u
2
+ 1)
· (u
28
5u
27
+ ··· + 613u + 1274)
c
9
(u
2
u + 1)(u
4
3u
3
+ 2u
2
+ 1)(u
12
12u
11
+ ··· 116u + 17)
· (u
28
+ 13u
27
+ ··· 12374u + 2437)
c
10
(u
2
+ u + 1)(u
4
+ 3u
3
+ 2u
2
+ 1)(u
12
6u
11
+ ··· + 2u + 1)
· (u
28
7u
27
+ ··· + 1306u + 37)
c
12
(u
2
u + 1)(u
4
+ u
3
+ 2u
2
+ 2u + 1)(u
12
2u
11
+ ··· 56u + 17)
· (u
28
3u
27
+ ··· + 180u + 73)
21
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)
3
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
· (y
28
+ 8y
27
+ ··· + 191y + 16)
c
2
, c
6
(y
2
+ y + 1)
3
(y
6
+ 3y
5
+ 5y
4
+ 4y
3
+ 2y
2
+ y + 1)
2
· (y
28
+ 12y
27
+ ··· + 19y + 4)
c
3
(y
2
+ y + 1)
3
(y
6
y
5
+ 5y
4
+ 6y
2
3y + 1)
2
· (y
28
+ 4y
27
+ ··· + 256y + 256)
c
4
(y + 1)
12
(y
2
+ y + 1)(y
4
+ 3y
3
+ 2y
2
+ 1)
· (y
28
+ 49y
27
+ ··· 4718y + 289)
c
5
(y + 1)
12
(y
2
+ y + 1)(y
4
+ 3y
3
+ 2y
2
+ 1)
· (y
28
3y
27
+ ··· 1326y + 289)
c
7
(y
2
+ y + 1)(y
4
+ 3y
3
+ 2y
2
+ 1)(y
12
8y
11
+ ··· + 8y + 1)
· (y
28
+ 89y
27
+ ··· 103896967394y + 11080299169)
c
8
, c
11
y
6
(y
6
+ 3y
5
+ 5y
4
+ 4y
3
+ 2y
2
+ y + 1)
2
· (y
28
+ 51y
27
+ ··· + 22472147y + 1623076)
c
9
(y
2
+ y + 1)(y
4
5y
3
+ ··· + 4y + 1)(y
12
6y
11
+ ··· + 620y + 289)
· (y
28
61y
27
+ ··· 43826174y + 5938969)
c
10
(y
2
+ y + 1)(y
4
5y
3
+ ··· + 4y + 1)(y
12
+ 8y
11
+ ··· 8y + 1)
· (y
28
+ 41y
27
+ ··· 885642y + 1369)
c
12
(y
2
+ y + 1)(y
4
+ 3y
3
+ 2y
2
+ 1)(y
12
+ 6y
11
+ ··· 620y + 289)
· (y
28
69y
27
+ ··· + 39870y + 5329)
22