12n
0287
(K12n
0287
)
A knot diagram
1
Linearized knot diagam
3 6 7 8 11 2 10 11 4 1 8 5
Solving Sequence
2,6
3 7
4,10
8 1 11 5 9 12
c
2
c
6
c
3
c
7
c
1
c
10
c
5
c
9
c
12
c
4
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−14u
35
85u
34
+ ··· + b 25, 27u
35
160u
34
+ ··· + 2a 59, u
36
+ 6u
35
+ ··· + 11u + 2i
I
u
2
= h2u
15
+ 7u
13
u
12
+ 12u
11
4u
10
+ 7u
9
5u
8
2u
7
u
6
5u
5
+ 5u
4
+ 3u
2
+ b u,
u
16
+ 5u
14
u
13
+ 11u
12
5u
11
+ 12u
10
10u
9
+ 4u
8
8u
7
3u
6
+ 2u
5
3u
4
+ 8u
3
u
2
+ a + 3u 2,
u
17
u
16
+ 5u
15
4u
14
+ 12u
13
9u
12
+ 16u
11
10u
10
+ 10u
9
5u
8
+ 3u
6
6u
5
+ 6u
4
4u
3
+ 4u
2
2u + 1i
I
u
3
= h−u
17
+ u
16
+ ··· + b + 1, u
17
a + 4u
17
+ ··· + a
2
5, u
18
u
17
+ ··· u + 1i
* 3 irreducible components of dim
C
= 0, with total 89 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−14u
35
85u
34
+ · · · + b 25, 27u
35
160u
34
+ · · · + 2a
59, u
36
+ 6u
35
+ · · · + 11u + 2i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
a
4
=
u
4
+ u
2
+ 1
u
4
a
10
=
27
2
u
35
+ 80u
34
+ ··· +
287
2
u +
59
2
14u
35
+ 85u
34
+ ··· + 135u + 25
a
8
=
5
2
u
35
+ 15u
34
+ ··· +
55
2
u +
13
2
3u
35
+ 17u
34
+ ··· + 27u + 5
a
1
=
u
2
+ 1
u
4
a
11
=
17
2
u
35
+ 51u
34
+ ··· +
205
2
u +
41
2
5u
35
+ 36u
34
+ ··· + 85u + 17
a
5
=
1
2
u
35
5u
34
+ ··· +
1
2
u +
3
2
2u
35
14u
34
+ ··· 19u 3
a
9
=
7
2
u
35
+ 21u
34
+ ··· +
85
2
u +
17
2
u
35
+ 6u
34
+ ··· + 30u + 7
a
12
=
13
2
u
35
+ 38u
34
+ ··· +
121
2
u +
27
2
11u
35
+ 63u
34
+ ··· + 69u + 11
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 10u
35
47u
34
193u
33
528u
32
1308u
31
2680u
30
5100u
29
8677u
28
13841u
27
20439u
26
28425u
25
37282u
24
46259u
23
54570u
22
61115u
21
65180u
20
66272u
19
64122u
18
59268u
17
52003u
16
43524u
15
34581u
14
26106u
13
18689u
12
12638u
11
8103u
10
4980u
9
2882u
8
1585u
7
744u
6
322u
5
123u
4
56u
3
11u
2
+ 11u + 16
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
36
+ 18u
35
+ ··· + 11u + 4
c
2
, c
6
u
36
6u
35
+ ··· 11u + 2
c
3
u
36
+ 6u
35
+ ··· + 721u + 74
c
4
, c
12
u
36
28u
34
+ ··· + u + 1
c
5
, c
9
u
36
8u
34
+ ··· 19u + 23
c
7
, c
10
u
36
3u
35
+ ··· 4u + 1
c
8
, c
11
u
36
+ 17u
35
+ ··· 1495u + 160
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
36
+ 2y
35
+ ··· + 415y + 16
c
2
, c
6
y
36
+ 18y
35
+ ··· + 11y + 4
c
3
y
36
20y
35
+ ··· 111805y + 5476
c
4
, c
12
y
36
56y
35
+ ··· y + 1
c
5
, c
9
y
36
16y
35
+ ··· 5421y + 529
c
7
, c
10
y
36
+ 9y
35
+ ··· + 16y + 1
c
8
, c
11
y
36
29y
35
+ ··· 1047185y + 25600
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.149973 + 0.998728I
a = 0.826426 + 0.069933I
b = 0.978572 0.499137I
2.48443 1.62652I 2.33035 + 4.22312I
u = 0.149973 0.998728I
a = 0.826426 0.069933I
b = 0.978572 + 0.499137I
2.48443 + 1.62652I 2.33035 4.22312I
u = 0.991952 + 0.201272I
a = 0.095835 0.534611I
b = 0.1012230 0.0449035I
5.44078 0.44653I 17.6525 + 14.6221I
u = 0.991952 0.201272I
a = 0.095835 + 0.534611I
b = 0.1012230 + 0.0449035I
5.44078 + 0.44653I 17.6525 14.6221I
u = 0.722213 + 0.749533I
a = 0.458236 0.270213I
b = 0.182561 + 1.023860I
10.02280 + 8.45449I 8.41836 6.51159I
u = 0.722213 0.749533I
a = 0.458236 + 0.270213I
b = 0.182561 1.023860I
10.02280 8.45449I 8.41836 + 6.51159I
u = 0.704411 + 0.851124I
a = 0.304244 0.316418I
b = 0.793602 0.473087I
9.73048 3.08341I 8.49473 + 1.45967I
u = 0.704411 0.851124I
a = 0.304244 + 0.316418I
b = 0.793602 + 0.473087I
9.73048 + 3.08341I 8.49473 1.45967I
u = 0.839708 + 0.298444I
a = 2.16620 + 0.59359I
b = 0.604870 0.306470I
7.48792 + 11.15390I 7.02947 5.33510I
u = 0.839708 0.298444I
a = 2.16620 0.59359I
b = 0.604870 + 0.306470I
7.48792 11.15390I 7.02947 + 5.33510I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.459586 + 1.035300I
a = 0.189766 + 0.533405I
b = 0.983727 + 0.590961I
0.955654 + 0.821545I 0. 3.95614I
u = 0.459586 1.035300I
a = 0.189766 0.533405I
b = 0.983727 0.590961I
0.955654 0.821545I 0. + 3.95614I
u = 0.349884 + 1.107310I
a = 0.40589 1.81289I
b = 1.19270 2.50026I
4.05377 + 0.63572I 0.484295 0.443572I
u = 0.349884 1.107310I
a = 0.40589 + 1.81289I
b = 1.19270 + 2.50026I
4.05377 0.63572I 0.484295 + 0.443572I
u = 0.489524 + 1.057530I
a = 0.323550 0.327963I
b = 0.560466 0.804802I
0.66063 + 5.65062I 0.65729 7.68260I
u = 0.489524 1.057530I
a = 0.323550 + 0.327963I
b = 0.560466 + 0.804802I
0.66063 5.65062I 0.65729 + 7.68260I
u = 0.477205 + 1.078410I
a = 0.219824 + 1.300630I
b = 0.24654 + 1.84787I
0.93062 3.45682I 3.69827 + 2.78118I
u = 0.477205 1.078410I
a = 0.219824 1.300630I
b = 0.24654 1.84787I
0.93062 + 3.45682I 3.69827 2.78118I
u = 0.516662 + 1.118490I
a = 0.37409 2.28317I
b = 0.64651 3.41250I
2.89301 8.21064I 2.73606 + 6.67381I
u = 0.516662 1.118490I
a = 0.37409 + 2.28317I
b = 0.64651 + 3.41250I
2.89301 + 8.21064I 2.73606 6.67381I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.235187 + 1.215000I
a = 0.269343 + 1.318210I
b = 1.29431 + 2.00975I
2.56736 + 7.86975I 1.57367 3.75977I
u = 0.235187 1.215000I
a = 0.269343 1.318210I
b = 1.29431 2.00975I
2.56736 7.86975I 1.57367 + 3.75977I
u = 0.437735 + 0.549718I
a = 0.890033 + 0.585768I
b = 0.312734 1.109250I
0.56302 + 2.97658I 7.22028 + 1.12421I
u = 0.437735 0.549718I
a = 0.890033 0.585768I
b = 0.312734 + 1.109250I
0.56302 2.97658I 7.22028 1.12421I
u = 0.579068 + 1.162280I
a = 0.18131 + 2.07088I
b = 0.66974 + 3.26898I
4.9093 16.4009I 4.03368 + 8.81881I
u = 0.579068 1.162280I
a = 0.18131 2.07088I
b = 0.66974 3.26898I
4.9093 + 16.4009I 4.03368 8.81881I
u = 0.645401 + 0.250421I
a = 2.56211 0.68246I
b = 0.796733 0.012403I
0.44102 + 3.68764I 6.93148 2.97663I
u = 0.645401 0.250421I
a = 2.56211 + 0.68246I
b = 0.796733 + 0.012403I
0.44102 3.68764I 6.93148 + 2.97663I
u = 0.379298 + 1.270510I
a = 0.367307 + 0.599503I
b = 0.495507 + 1.221510I
0.75632 4.99885I 0. + 9.16274I
u = 0.379298 1.270510I
a = 0.367307 0.599503I
b = 0.495507 1.221510I
0.75632 + 4.99885I 0. 9.16274I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.507489 + 0.424879I
a = 0.697425 0.253280I
b = 0.190814 + 0.745125I
1.18510 1.52172I 5.49872 + 4.62592I
u = 0.507489 0.424879I
a = 0.697425 + 0.253280I
b = 0.190814 0.745125I
1.18510 + 1.52172I 5.49872 4.62592I
u = 0.505579 + 0.388688I
a = 1.192940 + 0.572586I
b = 0.480909 + 0.224460I
1.086520 0.606535I 7.97928 + 3.45064I
u = 0.505579 0.388688I
a = 1.192940 0.572586I
b = 0.480909 0.224460I
1.086520 + 0.606535I 7.97928 3.45064I
u = 0.651042 + 1.222950I
a = 0.174939 0.327220I
b = 0.422269 0.499103I
2.39061 5.47394I 20.9532 + 20.3381I
u = 0.651042 1.222950I
a = 0.174939 + 0.327220I
b = 0.422269 + 0.499103I
2.39061 + 5.47394I 20.9532 20.3381I
8
II.
I
u
2
= h2u
15
+7u
13
+· · ·+b u, u
16
+5u
14
+· · ·+a 2, u
17
u
16
+· · ·2u +1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
a
4
=
u
4
+ u
2
+ 1
u
4
a
10
=
u
16
5u
14
+ ··· 3u + 2
2u
15
7u
13
+ ··· 3u
2
+ u
a
8
=
2u
16
u
15
+ ··· + 4u 3
u
16
+ 5u
14
+ ··· + 2u 1
a
1
=
u
2
+ 1
u
4
a
11
=
2u
16
+ u
15
+ ··· 4u + 2
u
16
4u
14
+ ··· u + 1
a
5
=
3u
16
5u
15
+ ··· + 11u 7
u
16
4u
15
+ ··· + 6u 5
a
9
=
2u
16
+ u
15
+ ··· 5u + 2
u
16
+ u
15
+ ··· 2u + 2
a
12
=
5u
16
+ 2u
15
+ ··· 12u + 8
2u
16
2u
15
+ ··· 2u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
15
4u
14
+ 24u
13
12u
12
+ 48u
11
20u
10
+ 44u
9
6u
8
+
6u
7
+ 12u
6
21u
5
+ 22u
4
14u
3
+ 10u
2
u + 6
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
9u
16
+ ··· 4u + 1
c
2
u
17
u
16
+ ··· 2u + 1
c
3
u
17
+ u
16
+ ··· + 2u + 5
c
4
, c
12
u
17
2u
16
+ ··· 3u + 1
c
5
, c
9
u
17
8u
15
+ ··· u + 1
c
6
u
17
+ u
16
+ ··· 2u 1
c
7
, c
10
u
17
3u
16
+ ··· + 2u + 1
c
8
u
17
+ 14u
16
+ ··· + 23u + 5
c
11
u
17
14u
16
+ ··· + 23u 5
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
+ y
16
+ ··· 8y 1
c
2
, c
6
y
17
+ 9y
16
+ ··· 4y 1
c
3
y
17
13y
16
+ ··· 86y 25
c
4
, c
12
y
17
16y
16
+ ··· 3y 1
c
5
, c
9
y
17
16y
16
+ ··· + 9y 1
c
7
, c
10
y
17
7y
16
+ ··· + 4y 1
c
8
, c
11
y
17
18y
16
+ ··· 371y 25
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.431008 + 0.942233I
a = 0.209460 + 0.502451I
b = 0.824758 + 0.503665I
0.436145 0.105477I 5.17968 2.38886I
u = 0.431008 0.942233I
a = 0.209460 0.502451I
b = 0.824758 0.503665I
0.436145 + 0.105477I 5.17968 + 2.38886I
u = 0.874680
a = 0.192244
b = 0.315231
5.41472 11.0230
u = 0.468457 + 0.715892I
a = 0.678237 + 0.210938I
b = 0.173523 0.977457I
0.24900 3.62004I 1.98563 + 8.95063I
u = 0.468457 0.715892I
a = 0.678237 0.210938I
b = 0.173523 + 0.977457I
0.24900 + 3.62004I 1.98563 8.95063I
u = 0.464004 + 1.050320I
a = 0.31217 + 3.03749I
b = 0.65170 + 4.08273I
5.02616 + 3.30361I 0.39237 4.97703I
u = 0.464004 1.050320I
a = 0.31217 3.03749I
b = 0.65170 4.08273I
5.02616 3.30361I 0.39237 + 4.97703I
u = 0.773218 + 0.228170I
a = 1.92418 0.33198I
b = 0.478975 + 0.164410I
2.06386 4.46334I 0.46360 + 4.84315I
u = 0.773218 0.228170I
a = 1.92418 + 0.33198I
b = 0.478975 0.164410I
2.06386 + 4.46334I 0.46360 4.84315I
u = 0.305634 + 1.188350I
a = 0.051305 1.236500I
b = 0.65454 1.98487I
6.36852 1.01335I 5.48366 + 1.62767I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.305634 1.188350I
a = 0.051305 + 1.236500I
b = 0.65454 + 1.98487I
6.36852 + 1.01335I 5.48366 1.62767I
u = 0.539603 + 1.156090I
a = 0.00613 1.80864I
b = 0.17533 2.86609I
4.76857 + 9.35771I 2.38330 7.93311I
u = 0.539603 1.156090I
a = 0.00613 + 1.80864I
b = 0.17533 + 2.86609I
4.76857 9.35771I 2.38330 + 7.93311I
u = 0.596101 + 1.176370I
a = 0.0194796 0.1364700I
b = 0.343510 0.109245I
2.18794 5.27328I 0.326316 0.621275I
u = 0.596101 1.176370I
a = 0.0194796 + 0.1364700I
b = 0.343510 + 0.109245I
2.18794 + 5.27328I 0.326316 + 0.621275I
u = 0.350446 + 0.524920I
a = 2.77555 1.60523I
b = 1.64862 0.37193I
6.75650 + 0.40196I 5.16061 + 1.96558I
u = 0.350446 0.524920I
a = 2.77555 + 1.60523I
b = 1.64862 + 0.37193I
6.75650 0.40196I 5.16061 1.96558I
13
III.
I
u
3
= h−u
17
+u
16
+· · ·+b+1, u
17
a+4u
17
+· · ·+a
2
5, u
18
u
17
+· · ·u+1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
a
4
=
u
4
+ u
2
+ 1
u
4
a
10
=
a
u
17
u
16
+ ··· + u 1
a
8
=
u
17
+ u
16
+ ··· a 1
2u
17
+ 2u
16
+ ··· 2u + 1
a
1
=
u
2
+ 1
u
4
a
11
=
u
17
u
16
+ ··· + a + 1
2u
17
2u
16
+ ··· + 2u 1
a
5
=
3u
17
3u
16
+ ··· a 4
4u
17
4u
16
+ ··· + 4u 3
a
9
=
u
17
u
16
+ ··· + a + 1
2u
17
2u
16
+ ··· + u 1
a
12
=
3u
17
+ 2u
16
+ ··· 3a 2
6u
17
+ 5u
16
+ ··· 6u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
17
+ 4u
16
16u
15
+ 12u
14
32u
13
+ 24u
12
36u
11
+ 28u
10
24u
9
+ 28u
8
12u
7
+ 16u
6
8u
5
+ 8u
4
8u
3
4u + 14
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
18
+ 9u
17
+ ··· + u + 1)
2
c
2
, c
6
(u
18
+ u
17
+ ··· + u + 1)
2
c
3
(u
18
u
17
+ ··· u + 5)
2
c
4
, c
12
u
36
+ u
35
+ ··· 4000u + 889
c
5
, c
9
u
36
+ u
35
+ ··· 84188u + 25097
c
7
, c
10
u
36
15u
35
+ ··· 340u + 25
c
8
, c
11
(u
18
15u
17
+ ··· + 29u + 3)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
18
+ y
17
+ ··· + 9y + 1)
2
c
2
, c
6
(y
18
+ 9y
17
+ ··· + y + 1)
2
c
3
(y
18
7y
17
+ ··· 91y + 25)
2
c
4
, c
12
y
36
45y
35
+ ··· 11217180y + 790321
c
5
, c
9
y
36
25y
35
+ ··· 7934994452y + 629859409
c
7
, c
10
y
36
9y
35
+ ··· + 14100y + 625
c
8
, c
11
(y
18
35y
17
+ ··· 211y + 9)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.606951 + 0.762732I
a = 0.672810 + 0.417119I
b = 0.184656 0.365220I
1.63218 2.36433I 8.96106 + 3.34702I
u = 0.606951 + 0.762732I
a = 0.085009 + 0.384811I
b = 0.428365 + 0.927160I
1.63218 2.36433I 8.96106 + 3.34702I
u = 0.606951 0.762732I
a = 0.672810 0.417119I
b = 0.184656 + 0.365220I
1.63218 + 2.36433I 8.96106 3.34702I
u = 0.606951 0.762732I
a = 0.085009 0.384811I
b = 0.428365 0.927160I
1.63218 + 2.36433I 8.96106 3.34702I
u = 0.320154 + 1.065080I
a = 1.344920 + 0.399822I
b = 0.333397 + 0.527308I
2.99038 0.58479I 3.81506 0.42463I
u = 0.320154 + 1.065080I
a = 0.54509 + 1.40985I
b = 1.52871 + 2.64353I
2.99038 0.58479I 3.81506 0.42463I
u = 0.320154 1.065080I
a = 1.344920 0.399822I
b = 0.333397 0.527308I
2.99038 + 0.58479I 3.81506 + 0.42463I
u = 0.320154 1.065080I
a = 0.54509 1.40985I
b = 1.52871 2.64353I
2.99038 + 0.58479I 3.81506 + 0.42463I
u = 0.483861 + 1.030980I
a = 0.41599 + 2.66215I
b = 0.88355 + 4.52483I
5.97153 + 3.09151I 11.11493 2.77317I
u = 0.483861 + 1.030980I
a = 0.32117 3.24954I
b = 0.56235 3.23198I
5.97153 + 3.09151I 11.11493 2.77317I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.483861 1.030980I
a = 0.41599 2.66215I
b = 0.88355 4.52483I
5.97153 3.09151I 11.11493 + 2.77317I
u = 0.483861 1.030980I
a = 0.32117 + 3.24954I
b = 0.56235 + 3.23198I
5.97153 3.09151I 11.11493 + 2.77317I
u = 0.781793 + 0.257942I
a = 1.50733 + 0.37688I
b = 0.649577 0.040046I
0.79783 3.98828I 8.01934 + 2.30410I
u = 0.781793 + 0.257942I
a = 1.81527 0.39003I
b = 0.249789 + 0.261114I
0.79783 3.98828I 8.01934 + 2.30410I
u = 0.781793 0.257942I
a = 1.50733 0.37688I
b = 0.649577 + 0.040046I
0.79783 + 3.98828I 8.01934 2.30410I
u = 0.781793 0.257942I
a = 1.81527 + 0.39003I
b = 0.249789 0.261114I
0.79783 + 3.98828I 8.01934 2.30410I
u = 0.286599 + 1.176040I
a = 0.129696 1.018410I
b = 0.84736 1.88349I
5.21072 0.69909I 2.61745 0.31146I
u = 0.286599 + 1.176040I
a = 0.111176 + 1.187900I
b = 0.28946 + 1.60976I
5.21072 0.69909I 2.61745 0.31146I
u = 0.286599 1.176040I
a = 0.129696 + 1.018410I
b = 0.84736 + 1.88349I
5.21072 + 0.69909I 2.61745 + 0.31146I
u = 0.286599 1.176040I
a = 0.111176 1.187900I
b = 0.28946 1.60976I
5.21072 + 0.69909I 2.61745 + 0.31146I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.527745 + 1.103190I
a = 1.191070 + 0.466746I
b = 2.91002 + 0.99091I
4.40791 6.64525I 7.35959 + 7.71274I
u = 0.527745 + 1.103190I
a = 1.43943 + 1.42860I
b = 0.83094 + 1.94919I
4.40791 6.64525I 7.35959 + 7.71274I
u = 0.527745 1.103190I
a = 1.191070 0.466746I
b = 2.91002 0.99091I
4.40791 + 6.64525I 7.35959 7.71274I
u = 0.527745 1.103190I
a = 1.43943 1.42860I
b = 0.83094 1.94919I
4.40791 + 6.64525I 7.35959 7.71274I
u = 0.500651 + 0.525564I
a = 2.56302 0.46993I
b = 2.37571 + 0.29310I
7.49746 + 0.97328I 14.1139 4.5518I
u = 0.500651 + 0.525564I
a = 3.00132 1.06603I
b = 0.551934 0.024389I
7.49746 + 0.97328I 14.1139 4.5518I
u = 0.500651 0.525564I
a = 2.56302 + 0.46993I
b = 2.37571 0.29310I
7.49746 0.97328I 14.1139 + 4.5518I
u = 0.500651 0.525564I
a = 3.00132 + 1.06603I
b = 0.551934 + 0.024389I
7.49746 0.97328I 14.1139 + 4.5518I
u = 0.548853 + 1.153160I
a = 0.00604 1.65136I
b = 0.30591 2.86421I
3.42686 + 8.95499I 4.97585 5.84784I
u = 0.548853 + 1.153160I
a = 0.22040 + 1.64693I
b = 0.40384 + 2.31431I
3.42686 + 8.95499I 4.97585 5.84784I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.548853 1.153160I
a = 0.00604 + 1.65136I
b = 0.30591 + 2.86421I
3.42686 8.95499I 4.97585 + 5.84784I
u = 0.548853 1.153160I
a = 0.22040 1.64693I
b = 0.40384 2.31431I
3.42686 8.95499I 4.97585 + 5.84784I
u = 0.646907 + 0.309141I
a = 1.50508 0.65497I
b = 0.59498 1.52441I
6.67515 + 2.06052I 11.02279 4.27827I
u = 0.646907 + 0.309141I
a = 1.00812 2.23459I
b = 0.043192 + 0.359954I
6.67515 + 2.06052I 11.02279 4.27827I
u = 0.646907 0.309141I
a = 1.50508 + 0.65497I
b = 0.59498 + 1.52441I
6.67515 2.06052I 11.02279 + 4.27827I
u = 0.646907 0.309141I
a = 1.00812 + 2.23459I
b = 0.043192 0.359954I
6.67515 2.06052I 11.02279 + 4.27827I
20
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
17
9u
16
+ ··· 4u + 1)(u
18
+ 9u
17
+ ··· + u + 1)
2
· (u
36
+ 18u
35
+ ··· + 11u + 4)
c
2
(u
17
u
16
+ ··· 2u + 1)(u
18
+ u
17
+ ··· + u + 1)
2
· (u
36
6u
35
+ ··· 11u + 2)
c
3
(u
17
+ u
16
+ ··· + 2u + 5)(u
18
u
17
+ ··· u + 5)
2
· (u
36
+ 6u
35
+ ··· + 721u + 74)
c
4
, c
12
(u
17
2u
16
+ ··· 3u + 1)(u
36
28u
34
+ ··· + u + 1)
· (u
36
+ u
35
+ ··· 4000u + 889)
c
5
, c
9
(u
17
8u
15
+ ··· u + 1)(u
36
8u
34
+ ··· 19u + 23)
· (u
36
+ u
35
+ ··· 84188u + 25097)
c
6
(u
17
+ u
16
+ ··· 2u 1)(u
18
+ u
17
+ ··· + u + 1)
2
· (u
36
6u
35
+ ··· 11u + 2)
c
7
, c
10
(u
17
3u
16
+ ··· + 2u + 1)(u
36
15u
35
+ ··· 340u + 25)
· (u
36
3u
35
+ ··· 4u + 1)
c
8
(u
17
+ 14u
16
+ ··· + 23u + 5)(u
18
15u
17
+ ··· + 29u + 3)
2
· (u
36
+ 17u
35
+ ··· 1495u + 160)
c
11
(u
17
14u
16
+ ··· + 23u 5)(u
18
15u
17
+ ··· + 29u + 3)
2
· (u
36
+ 17u
35
+ ··· 1495u + 160)
21
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
17
+ y
16
+ ··· 8y 1)(y
18
+ y
17
+ ··· + 9y + 1)
2
· (y
36
+ 2y
35
+ ··· + 415y + 16)
c
2
, c
6
(y
17
+ 9y
16
+ ··· 4y 1)(y
18
+ 9y
17
+ ··· + y + 1)
2
· (y
36
+ 18y
35
+ ··· + 11y + 4)
c
3
(y
17
13y
16
+ ··· 86y 25)(y
18
7y
17
+ ··· 91y + 25)
2
· (y
36
20y
35
+ ··· 111805y + 5476)
c
4
, c
12
(y
17
16y
16
+ ··· 3y 1)(y
36
56y
35
+ ··· y + 1)
· (y
36
45y
35
+ ··· 11217180y + 790321)
c
5
, c
9
(y
17
16y
16
+ ··· + 9y 1)
· (y
36
25y
35
+ ··· 7934994452y + 629859409)
· (y
36
16y
35
+ ··· 5421y + 529)
c
7
, c
10
(y
17
7y
16
+ ··· + 4y 1)(y
36
9y
35
+ ··· + 14100y + 625)
· (y
36
+ 9y
35
+ ··· + 16y + 1)
c
8
, c
11
(y
17
18y
16
+ ··· 371y 25)(y
18
35y
17
+ ··· 211y + 9)
2
· (y
36
29y
35
+ ··· 1047185y + 25600)
22