12n
0289
(K12n
0289
)
A knot diagram
1
Linearized knot diagam
3 6 7 10 2 5 10 12 5 1 8 11
Solving Sequence
2,6
3
1,10
11 5 7 8 4 12 9
c
2
c
1
c
10
c
5
c
6
c
7
c
4
c
12
c
8
c
3
, c
9
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
8
2u
6
+ u
5
+ 2u
4
u
3
u
2
+ b + u, u
11
+ 2u
9
4u
7
+ 4u
5
2u
4
3u
3
+ 2u
2
+ a + 2u 2,
u
12
u
11
2u
10
+ 3u
9
+ 3u
8
5u
7
2u
6
+ 6u
5
4u
3
+ 3u 1i
I
u
2
= h−3u
41
+ 7u
40
+ ··· + 2b + 7, 3u
41
5u
40
+ ··· + 2a + 5, u
42
3u
41
+ ··· 2u + 1i
I
u
3
= hb + u, a + u, u
3
+ u
2
1i
I
u
4
= hb a, u
2
a + a
2
+ u
2
+ 2u + 1, u
3
+ u
2
1i
* 4 irreducible components of dim
C
= 0, with total 63 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
8
2u
6
+ u
5
+ 2u
4
u
3
u
2
+ b + u, u
11
+ 2u
9
+ · · · + a
2, u
12
u
11
+ · · · + 3u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
1
=
u
2
+ 1
u
4
a
10
=
u
11
2u
9
+ 4u
7
4u
5
+ 2u
4
+ 3u
3
2u
2
2u + 2
u
8
+ 2u
6
u
5
2u
4
+ u
3
+ u
2
u
a
11
=
u
11
2u
9
+ 4u
7
4u
5
+ u
4
+ 3u
3
u
2
2u + 2
u
8
+ u
6
u
5
2u
4
+ u
3
+ u
2
u
a
5
=
u
u
a
7
=
u
3
u
3
+ u
a
8
=
u
9
+ 2u
7
u
6
3u
5
+ u
4
+ 2u
3
u
2
u
u
9
+ 2u
7
u
6
3u
5
+ 2u
4
+ 2u
3
2u
2
u + 1
a
4
=
u
8
+ u
6
u
4
+ 1
u
8
+ 2u
6
2u
4
+ 2u
2
a
12
=
u
11
u
10
2u
9
+ 2u
8
+ 3u
7
3u
6
3u
5
+ 3u
4
+ 2u
3
2u
2
2u + 2
u
10
+ u
8
u
7
2u
6
+ u
5
u
3
a
9
=
u
4
+ u
2
1
u
11
2u
9
+ u
8
+ 4u
7
2u
6
3u
5
+ 3u
4
+ 2u
3
2u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
11
6u
9
+ 12u
7
+ 2u
6
8u
5
+ 2u
4
+ 8u
3
+ 2u
2
8u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
10
c
12
u
12
+ 5u
11
+ ··· + 9u + 1
c
2
, c
5
, c
8
c
11
u
12
+ u
11
2u
10
3u
9
+ 3u
8
+ 5u
7
2u
6
6u
5
+ 4u
3
3u 1
c
3
, c
7
u
12
u
11
+ ··· 5u 1
c
4
, c
9
u
12
+ 7u
11
+ ··· + 32u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
10
c
12
y
12
+ 7y
11
+ ··· 33y + 1
c
2
, c
5
, c
8
c
11
y
12
5y
11
+ ··· 9y + 1
c
3
, c
7
y
12
17y
11
+ ··· 9y + 1
c
4
, c
9
y
12
7y
11
+ ··· 192y + 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.921925 + 0.343588I
a = 0.611717 + 0.476706I
b = 0.056760 0.351806I
2.36994 2.76031I 17.1687 + 5.8086I
u = 0.921925 0.343588I
a = 0.611717 0.476706I
b = 0.056760 + 0.351806I
2.36994 + 2.76031I 17.1687 5.8086I
u = 0.588705 + 0.829892I
a = 1.69413 0.79218I
b = 1.295740 + 0.564858I
0.17368 + 3.06646I 8.92631 0.43083I
u = 0.588705 0.829892I
a = 1.69413 + 0.79218I
b = 1.295740 0.564858I
0.17368 3.06646I 8.92631 + 0.43083I
u = 0.700347 + 0.661080I
a = 0.49057 + 1.67492I
b = 1.37850 + 1.19320I
3.36282 + 2.18981I 7.17700 3.81343I
u = 0.700347 0.661080I
a = 0.49057 1.67492I
b = 1.37850 1.19320I
3.36282 2.18981I 7.17700 + 3.81343I
u = 0.993915 + 0.611197I
a = 1.53521 1.43733I
b = 2.02283 0.51409I
1.49384 + 7.77925I 11.7273 7.9652I
u = 0.993915 0.611197I
a = 1.53521 + 1.43733I
b = 2.02283 + 0.51409I
1.49384 7.77925I 11.7273 + 7.9652I
u = 1.18481
a = 0.513967
b = 0.968302
12.5188 20.4260
u = 1.073430 + 0.702670I
a = 0.31962 + 2.22050I
b = 1.57673 + 2.45459I
3.0728 14.5878I 12.5949 + 9.1386I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.073430 0.702670I
a = 0.31962 2.22050I
b = 1.57673 2.45459I
3.0728 + 14.5878I 12.5949 9.1386I
u = 0.405199
a = 1.07767
b = 0.231197
0.765991 12.3860
6
II. I
u
2
=
h−3u
41
+7u
40
+· · ·+2b+7, 3u
41
5u
40
+· · ·+2a+5, u
42
3u
41
+· · ·2u+1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
1
=
u
2
+ 1
u
4
a
10
=
3
2
u
41
+
5
2
u
40
+ ··· +
21
2
u
5
2
3
2
u
41
7
2
u
40
+ ··· +
15
2
u
7
2
a
11
=
11
2
u
41
15u
40
+ ··· + 17u
17
2
7u
41
35
2
u
40
+ ··· +
31
2
u
21
2
a
5
=
u
u
a
7
=
u
3
u
3
+ u
a
8
=
1
2
u
39
u
38
+ ··· + u
1
2
1
2
u
39
u
38
+ ··· + u +
1
2
a
4
=
u
8
+ u
6
u
4
+ 1
u
8
+ 2u
6
2u
4
+ 2u
2
a
12
=
1
2
u
41
3
2
u
40
+ ···
1
2
u + 1
1
2
u
40
+
9
2
u
38
+ ··· +
1
2
u 1
a
9
=
3
2
u
41
+
9
2
u
40
+ ···
27
2
u +
11
2
9
2
u
41
+
21
2
u
40
+ ···
21
2
u +
13
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
41
9
2
u
40
+ ···
45
2
u
21
2
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
10
c
12
u
42
+ 15u
41
+ ··· + 20u + 1
c
2
, c
5
, c
8
c
11
u
42
+ 3u
41
+ ··· + 2u + 1
c
3
, c
7
u
42
3u
41
+ ··· + 24u + 1
c
4
, c
9
(u
21
3u
20
+ ··· 4u + 8)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
10
c
12
y
42
+ 25y
41
+ ··· 12y + 1
c
2
, c
5
, c
8
c
11
y
42
15y
41
+ ··· 20y + 1
c
3
, c
7
y
42
35y
41
+ ··· 372y + 1
c
4
, c
9
(y
21
21y
20
+ ··· + 80y 64)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.001590 + 0.071446I
a = 0.247034 + 0.982841I
b = 0.0703049 0.0213694I
1.68246 + 2.02701I 16.1395 3.2075I
u = 1.001590 0.071446I
a = 0.247034 0.982841I
b = 0.0703049 + 0.0213694I
1.68246 2.02701I 16.1395 + 3.2075I
u = 0.884746 + 0.507709I
a = 1.00430 1.65860I
b = 1.70041 0.93550I
1.68246 + 2.02701I 16.1395 3.2075I
u = 0.884746 0.507709I
a = 1.00430 + 1.65860I
b = 1.70041 + 0.93550I
1.68246 2.02701I 16.1395 + 3.2075I
u = 0.498112 + 0.843586I
a = 1.51048 + 0.33957I
b = 0.92205 1.13548I
6.44569 + 1.90498I 15.1767 0.6933I
u = 0.498112 0.843586I
a = 1.51048 0.33957I
b = 0.92205 + 1.13548I
6.44569 1.90498I 15.1767 + 0.6933I
u = 0.833041 + 0.624453I
a = 0.244467 1.048030I
b = 0.795422 0.433395I
4.76367 + 0.56948I 11.53430 0.71170I
u = 0.833041 0.624453I
a = 0.244467 + 1.048030I
b = 0.795422 + 0.433395I
4.76367 0.56948I 11.53430 + 0.71170I
u = 0.589823 + 0.864603I
a = 1.89138 + 0.71030I
b = 1.53680 0.72844I
1.59942 + 8.75882I 10.82911 4.89320I
u = 0.589823 0.864603I
a = 1.89138 0.71030I
b = 1.53680 + 0.72844I
1.59942 8.75882I 10.82911 + 4.89320I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.865106 + 0.622456I
a = 0.478460 + 0.785204I
b = 1.077610 + 0.227526I
4.66319 5.46111I 12.12408 + 5.29794I
u = 0.865106 0.622456I
a = 0.478460 0.785204I
b = 1.077610 0.227526I
4.66319 + 5.46111I 12.12408 5.29794I
u = 0.370195 + 0.797477I
a = 0.975137 + 0.163149I
b = 0.109542 1.285730I
2.89368 5.09092I 11.85705 + 4.85512I
u = 0.370195 0.797477I
a = 0.975137 0.163149I
b = 0.109542 + 1.285730I
2.89368 + 5.09092I 11.85705 4.85512I
u = 0.877054 + 0.709305I
a = 0.621738 + 0.723259I
b = 0.924556 + 0.344996I
2.39962 + 2.72155I 2.38517 1.80674I
u = 0.877054 0.709305I
a = 0.621738 0.723259I
b = 0.924556 0.344996I
2.39962 2.72155I 2.38517 + 1.80674I
u = 1.140080 + 0.053957I
a = 0.121069 0.443029I
b = 1.234320 0.298114I
6.44569 + 1.90498I 15.1767 0.6933I
u = 1.140080 0.053957I
a = 0.121069 + 0.443029I
b = 1.234320 + 0.298114I
6.44569 1.90498I 15.1767 + 0.6933I
u = 0.948500 + 0.657394I
a = 1.35145 + 1.05024I
b = 1.70425 + 0.27722I
2.62978 + 2.94639I 8.38979 1.94831I
u = 0.948500 0.657394I
a = 1.35145 1.05024I
b = 1.70425 0.27722I
2.62978 2.94639I 8.38979 + 1.94831I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.440380 + 0.720566I
a = 1.022170 0.478261I
b = 0.238333 + 0.804288I
1.18994 9.46820 + 0.I
u = 0.440380 0.720566I
a = 1.022170 + 0.478261I
b = 0.238333 0.804288I
1.18994 9.46820 + 0.I
u = 0.602886 + 0.586036I
a = 0.56399 1.78814I
b = 1.51211 1.10890I
2.62978 2.94639I 8.38979 + 1.94831I
u = 0.602886 0.586036I
a = 0.56399 + 1.78814I
b = 1.51211 + 1.10890I
2.62978 + 2.94639I 8.38979 1.94831I
u = 1.169360 + 0.079358I
a = 0.342452 + 0.671662I
b = 1.087440 + 0.452577I
8.23029 + 7.48200I 17.0704 5.2473I
u = 1.169360 0.079358I
a = 0.342452 0.671662I
b = 1.087440 0.452577I
8.23029 7.48200I 17.0704 + 5.2473I
u = 0.869430 + 0.810182I
a = 0.90284 + 1.14540I
b = 0.28767 + 1.52547I
4.76367 + 0.56948I 11.53430 0.71170I
u = 0.869430 0.810182I
a = 0.90284 1.14540I
b = 0.28767 1.52547I
4.76367 0.56948I 11.53430 + 0.71170I
u = 0.903021 + 0.803753I
a = 1.23931 0.82374I
b = 0.76478 1.36737I
4.66319 + 5.46111I 12.00000 5.29794I
u = 0.903021 0.803753I
a = 1.23931 + 0.82374I
b = 0.76478 + 1.36737I
4.66319 5.46111I 12.00000 + 5.29794I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.054680 + 0.618331I
a = 0.151148 1.199150I
b = 0.95395 1.70109I
2.89368 5.09092I 12.00000 + 4.85512I
u = 1.054680 0.618331I
a = 0.151148 + 1.199150I
b = 0.95395 + 1.70109I
2.89368 + 5.09092I 12.00000 4.85512I
u = 1.086360 + 0.586494I
a = 0.636112 + 1.121460I
b = 0.52511 + 1.74837I
5.00675 15.0273 + 0.I
u = 1.086360 0.586494I
a = 0.636112 1.121460I
b = 0.52511 1.74837I
5.00675 15.0273 + 0.I
u = 1.060980 + 0.690081I
a = 0.35900 1.97361I
b = 1.55493 2.24059I
1.59942 8.75882I 10.82911 + 4.89320I
u = 1.060980 0.690081I
a = 0.35900 + 1.97361I
b = 1.55493 + 2.24059I
1.59942 + 8.75882I 10.82911 4.89320I
u = 1.091260 + 0.656406I
a = 0.23548 + 1.83960I
b = 1.02758 + 2.26060I
8.23029 7.48200I 17.0704 + 5.2473I
u = 1.091260 0.656406I
a = 0.23548 1.83960I
b = 1.02758 2.26060I
8.23029 + 7.48200I 17.0704 5.2473I
u = 0.448134 + 0.218946I
a = 0.896777 0.436761I
b = 0.220693 + 0.109203I
0.751959 11.49246 + 0.I
u = 0.448134 0.218946I
a = 0.896777 + 0.436761I
b = 0.220693 0.109203I
0.751959 11.49246 + 0.I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.444576 + 0.086145I
a = 0.12834 2.59332I
b = 0.36382 1.40958I
2.39962 2.72155I 2.38517 + 1.80674I
u = 0.444576 0.086145I
a = 0.12834 + 2.59332I
b = 0.36382 + 1.40958I
2.39962 + 2.72155I 2.38517 1.80674I
14
III. I
u
3
= hb + u, a + u, u
3
+ u
2
1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
1
=
u
2
+ 1
u
2
u + 1
a
10
=
u
u
a
11
=
2u + 1
u
2
2u
a
5
=
u
u
a
7
=
u
2
1
u
2
+ u 1
a
8
=
2u
2
2
2u
2
+ u 2
a
4
=
u
u
a
12
=
2u
2
1
2u
2
2
a
9
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u 12
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
7
c
10
u
3
u
2
+ 2u 1
c
2
, c
8
u
3
+ u
2
1
c
4
, c
9
u
3
c
5
, c
11
u
3
u
2
+ 1
c
6
, c
12
u
3
+ u
2
+ 2u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
, c
12
y
3
+ 3y
2
+ 2y 1
c
2
, c
5
, c
8
c
11
y
3
y
2
+ 2y 1
c
4
, c
9
y
3
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.877439 0.744862I
b = 0.877439 0.744862I
6.04826 + 5.65624I 4.98049 5.95889I
u = 0.877439 0.744862I
a = 0.877439 + 0.744862I
b = 0.877439 + 0.744862I
6.04826 5.65624I 4.98049 + 5.95889I
u = 0.754878
a = 0.754878
b = 0.754878
2.22691 18.0390
18
IV. I
u
4
= hb a, u
2
a + a
2
+ u
2
+ 2u + 1, u
3
+ u
2
1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
1
=
u
2
+ 1
u
2
u + 1
a
10
=
a
a
a
11
=
u
2
a au + 2a
au + 2a
a
5
=
u
u
a
7
=
u
2
1
u
2
+ u 1
a
8
=
u
2
a + 2u
2
+ a + u
u
2
a + 2u
2
+ a + 2u
a
4
=
u
u
a
12
=
3u
2
a + 2a + 2
3u
2
a au + u
2
+ 3a + 2
a
9
=
a
a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
2
a + au u
2
8a 19
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
7
c
10
(u
3
u
2
+ 2u 1)
2
c
2
, c
8
(u
3
+ u
2
1)
2
c
4
, c
9
u
6
c
5
, c
11
(u
3
u
2
+ 1)
2
c
6
, c
12
(u
3
+ u
2
+ 2u + 1)
2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
, c
8
c
11
(y
3
y
2
+ 2y 1)
2
c
4
, c
9
y
6
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.592519 + 0.986732I
b = 0.592519 + 0.986732I
6.04826 5.39114 + 0.I
u = 0.877439 + 0.744862I
a = 0.377439 + 0.320410I
b = 0.377439 + 0.320410I
1.91067 + 2.82812I 18.8044 4.6518I
u = 0.877439 0.744862I
a = 0.592519 0.986732I
b = 0.592519 0.986732I
6.04826 5.39114 + 0.I
u = 0.877439 0.744862I
a = 0.377439 0.320410I
b = 0.377439 0.320410I
1.91067 2.82812I 18.8044 + 4.6518I
u = 0.754878
a = 0.28492 + 1.73159I
b = 0.28492 + 1.73159I
1.91067 + 2.82812I 18.8044 4.6518I
u = 0.754878
a = 0.28492 1.73159I
b = 0.28492 1.73159I
1.91067 2.82812I 18.8044 + 4.6518I
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
10
((u
3
u
2
+ 2u 1)
3
)(u
12
+ 5u
11
+ ··· + 9u + 1)
· (u
42
+ 15u
41
+ ··· + 20u + 1)
c
2
, c
8
(u
3
+ u
2
1)
3
· (u
12
+ u
11
2u
10
3u
9
+ 3u
8
+ 5u
7
2u
6
6u
5
+ 4u
3
3u 1)
· (u
42
+ 3u
41
+ ··· + 2u + 1)
c
3
, c
7
((u
3
u
2
+ 2u 1)
3
)(u
12
u
11
+ ··· 5u 1)
· (u
42
3u
41
+ ··· + 24u + 1)
c
4
, c
9
u
9
(u
12
+ 7u
11
+ ··· + 32u + 8)(u
21
3u
20
+ ··· 4u + 8)
2
c
5
, c
11
(u
3
u
2
+ 1)
3
· (u
12
+ u
11
2u
10
3u
9
+ 3u
8
+ 5u
7
2u
6
6u
5
+ 4u
3
3u 1)
· (u
42
+ 3u
41
+ ··· + 2u + 1)
c
6
, c
12
((u
3
+ u
2
+ 2u + 1)
3
)(u
12
+ 5u
11
+ ··· + 9u + 1)
· (u
42
+ 15u
41
+ ··· + 20u + 1)
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
10
c
12
((y
3
+ 3y
2
+ 2y 1)
3
)(y
12
+ 7y
11
+ ··· 33y + 1)
· (y
42
+ 25y
41
+ ··· 12y + 1)
c
2
, c
5
, c
8
c
11
((y
3
y
2
+ 2y 1)
3
)(y
12
5y
11
+ ··· 9y + 1)
· (y
42
15y
41
+ ··· 20y + 1)
c
3
, c
7
((y
3
+ 3y
2
+ 2y 1)
3
)(y
12
17y
11
+ ··· 9y + 1)
· (y
42
35y
41
+ ··· 372y + 1)
c
4
, c
9
y
9
(y
12
7y
11
+ ··· 192y + 64)(y
21
21y
20
+ ··· + 80y 64)
2
24