12n
0290
(K12n
0290
)
A knot diagram
1
Linearized knot diagam
3 6 7 8 2 5 11 5 12 7 9 10
Solving Sequence
5,8 9,11
12 4 7 3 6 2 1 10
c
8
c
11
c
4
c
7
c
3
c
6
c
2
c
1
c
10
c
5
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.68465 × 10
94
u
40
9.84743 × 10
94
u
39
+ ··· + 1.38333 × 10
95
b 5.11987 × 10
96
,
4.36327 × 10
94
u
40
1.61063 × 10
95
u
39
+ ··· + 2.76666 × 10
95
a 8.27022 × 10
96
,
u
41
+ 4u
40
+ ··· + 544u + 64i
I
u
2
= hb, a 1, u + 1i
I
v
1
= ha, 26v
5
+ 33v
4
+ 317v
3
+ 123v
2
+ 413b + 89v + 685, v
6
+ 3v
5
+ 15v
4
+ 24v
3
+ 11v
2
+ 6v + 1i
* 3 irreducible components of dim
C
= 0, with total 48 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2.68 × 10
94
u
40
9.85 × 10
94
u
39
+ · · · + 1.38 × 10
95
b 5.12 ×
10
96
, 4.36 × 10
94
u
40
1.61 × 10
95
u
39
+ · · · + 2.77 × 10
95
a 8.27 ×
10
96
, u
41
+ 4u
40
+ · · · + 544u + 64i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
11
=
0.157709u
40
+ 0.582157u
39
+ ··· + 171.531u + 29.8924
0.194072u
40
+ 0.711864u
39
+ ··· + 205.306u + 37.0112
a
12
=
0.0560706u
40
0.198690u
39
+ ··· 50.1633u 10.2342
0.220015u
40
+ 0.806259u
39
+ ··· + 232.028u + 41.7645
a
4
=
u
u
a
7
=
0.0860026u
40
0.314486u
39
+ ··· 88.7056u 16.8751
0.244795u
40
+ 0.889941u
39
+ ··· + 248.405u + 43.2805
a
3
=
0.0998198u
40
0.360991u
39
+ ··· 89.6766u 14.8006
0.137856u
40
+ 0.501525u
39
+ ··· + 141.893u + 24.7433
a
6
=
0.0860026u
40
0.314486u
39
+ ··· 88.7056u 16.8751
0.253986u
40
+ 0.923580u
39
+ ··· + 258.962u + 45.1700
a
2
=
0.214458u
40
0.770687u
39
+ ··· 201.880u 34.5510
0.344343u
40
+ 1.25111u
39
+ ··· + 349.391u + 60.8829
a
1
=
0.158792u
40
0.575454u
39
+ ··· 159.700u 26.4054
0.269010u
40
+ 0.976627u
39
+ ··· + 270.728u + 47.1022
a
10
=
0.357088u
40
+ 1.31046u
39
+ ··· + 376.594u + 66.5801
0.262269u
40
0.954859u
39
+ ··· 266.063u 46.3657
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.16290u
40
7.86224u
39
+ ··· 2195.29u 401.897
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
41
+ 10u
40
+ ··· + 124u + 1
c
2
, c
5
u
41
+ 4u
40
+ ··· 8u + 1
c
3
u
41
2u
40
+ ··· 56802u + 4129
c
4
, c
8
u
41
+ 4u
40
+ ··· + 544u + 64
c
7
, c
10
u
41
+ 4u
40
+ ··· 2u + 2
c
9
, c
11
, c
12
u
41
5u
40
+ ··· 11u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
41
+ 46y
40
+ ··· + 12420y 1
c
2
, c
5
y
41
10y
40
+ ··· + 124y 1
c
3
y
41
+ 106y
40
+ ··· + 3427830276y 17048641
c
4
, c
8
y
41
36y
40
+ ··· + 46080y 4096
c
7
, c
10
y
41
+ 42y
39
+ ··· + 24y 4
c
9
, c
11
, c
12
y
41
29y
40
+ ··· + 141y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.900371 + 0.275130I
a = 0.07966 1.47335I
b = 0.570501 + 0.849499I
1.03538 + 3.10516I 9.19728 4.58914I
u = 0.900371 0.275130I
a = 0.07966 + 1.47335I
b = 0.570501 0.849499I
1.03538 3.10516I 9.19728 + 4.58914I
u = 0.863117 + 0.163519I
a = 0.530392 1.038990I
b = 0.906841 + 0.441301I
0.434343 0.606208I 8.36824 + 3.20718I
u = 0.863117 0.163519I
a = 0.530392 + 1.038990I
b = 0.906841 0.441301I
0.434343 + 0.606208I 8.36824 3.20718I
u = 1.118190 + 0.134810I
a = 0.285482 + 1.154880I
b = 0.692354 0.679657I
2.14754 4.46827I 5.46325 + 6.31020I
u = 1.118190 0.134810I
a = 0.285482 1.154880I
b = 0.692354 + 0.679657I
2.14754 + 4.46827I 5.46325 6.31020I
u = 0.208887 + 0.817072I
a = 0.191298 0.000456I
b = 1.390780 + 0.124154I
6.67711 + 2.45351I 15.2931 1.4222I
u = 0.208887 0.817072I
a = 0.191298 + 0.000456I
b = 1.390780 0.124154I
6.67711 2.45351I 15.2931 + 1.4222I
u = 0.142298 + 0.686085I
a = 0.754137 0.156560I
b = 0.609820 0.257002I
0.95163 + 1.08981I 8.28855 6.14268I
u = 0.142298 0.686085I
a = 0.754137 + 0.156560I
b = 0.609820 + 0.257002I
0.95163 1.08981I 8.28855 + 6.14268I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.320790 + 0.205247I
a = 0.272392 + 0.830191I
b = 0.359803 0.924561I
3.58935 + 0.36497I 0
u = 1.320790 0.205247I
a = 0.272392 0.830191I
b = 0.359803 + 0.924561I
3.58935 0.36497I 0
u = 1.47758 + 0.08314I
a = 0.028558 + 0.821385I
b = 1.27898 1.15594I
7.32002 + 1.31400I 0
u = 1.47758 0.08314I
a = 0.028558 0.821385I
b = 1.27898 + 1.15594I
7.32002 1.31400I 0
u = 1.47211 + 0.17758I
a = 0.081855 0.839711I
b = 1.19530 + 1.24551I
7.22140 + 5.18811I 0
u = 1.47211 0.17758I
a = 0.081855 + 0.839711I
b = 1.19530 1.24551I
7.22140 5.18811I 0
u = 0.493631
a = 1.54896
b = 0.291712
1.40989 5.76550
u = 0.55563 + 1.40865I
a = 0.332513 + 0.052129I
b = 0.033282 0.910556I
4.81513 + 1.29204I 0
u = 0.55563 1.40865I
a = 0.332513 0.052129I
b = 0.033282 + 0.910556I
4.81513 1.29204I 0
u = 0.279316 + 0.386457I
a = 3.05813 4.36695I
b = 0.098053 + 0.379909I
2.86863 0.30349I 1.29089 11.45256I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.279316 0.386457I
a = 3.05813 + 4.36695I
b = 0.098053 0.379909I
2.86863 + 0.30349I 1.29089 + 11.45256I
u = 0.012640 + 0.387805I
a = 8.88584 + 0.60443I
b = 0.500213 + 0.034819I
1.80837 2.87388I 39.8656 + 3.3819I
u = 0.012640 0.387805I
a = 8.88584 0.60443I
b = 0.500213 0.034819I
1.80837 + 2.87388I 39.8656 3.3819I
u = 0.64609 + 1.49909I
a = 0.280505 0.050822I
b = 0.227266 + 0.902339I
4.34862 + 5.20839I 0
u = 0.64609 1.49909I
a = 0.280505 + 0.050822I
b = 0.227266 0.902339I
4.34862 5.20839I 0
u = 0.353952
a = 0.190811
b = 1.66327
9.84381 14.6310
u = 1.50019 + 0.69974I
a = 0.107163 0.866028I
b = 0.797327 + 0.867883I
1.34409 8.57415I 0
u = 1.50019 0.69974I
a = 0.107163 + 0.866028I
b = 0.797327 0.867883I
1.34409 + 8.57415I 0
u = 0.305001
a = 1.67143
b = 0.580690
1.10346 8.70760
u = 1.63935 + 0.45660I
a = 0.069974 + 0.912206I
b = 1.19023 1.18604I
11.66750 7.74036I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.63935 0.45660I
a = 0.069974 0.912206I
b = 1.19023 + 1.18604I
11.66750 + 7.74036I 0
u = 1.56194 + 0.67841I
a = 0.009027 + 0.726408I
b = 0.492906 0.964772I
1.69219 + 4.01190I 0
u = 1.56194 0.67841I
a = 0.009027 0.726408I
b = 0.492906 + 0.964772I
1.69219 4.01190I 0
u = 1.67787 + 0.37565I
a = 0.035629 0.893097I
b = 1.10249 + 1.25882I
11.97710 + 1.09300I 0
u = 1.67787 0.37565I
a = 0.035629 + 0.893097I
b = 1.10249 1.25882I
11.97710 1.09300I 0
u = 1.49517 + 0.90641I
a = 0.139383 0.997291I
b = 1.11424 + 1.19188I
7.3447 13.9917I 0
u = 1.49517 0.90641I
a = 0.139383 + 0.997291I
b = 1.11424 1.19188I
7.3447 + 13.9917I 0
u = 1.54232 + 0.88599I
a = 0.131039 + 0.948244I
b = 1.03138 1.24212I
8.03425 + 7.41571I 0
u = 1.54232 0.88599I
a = 0.131039 0.948244I
b = 1.03138 + 1.24212I
8.03425 7.41571I 0
u = 1.63054 + 0.83010I
a = 0.034959 0.425949I
b = 0.284331 + 0.549059I
3.12842 0.82148I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.63054 0.83010I
a = 0.034959 + 0.425949I
b = 0.284331 0.549059I
3.12842 + 0.82148I 0
9
II. I
u
2
= hb, a 1, u + 1i
(i) Arc colorings
a
5
=
0
1
a
8
=
1
0
a
9
=
1
1
a
11
=
1
0
a
12
=
0
1
a
4
=
1
1
a
7
=
1
0
a
3
=
0
1
a
6
=
1
1
a
2
=
1
0
a
1
=
1
1
a
10
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
9
u 1
c
5
, c
6
, c
8
c
11
, c
12
u + 1
c
7
, c
10
u
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
8
, c
9
, c
11
c
12
y 1
c
7
, c
10
y
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
3.28987 12.0000
13
III.
I
v
1
= ha, 26v
5
+33v
4
+· · · +413b + 685, v
6
+3v
5
+15v
4
+24v
3
+11v
2
+6v + 1i
(i) Arc colorings
a
5
=
v
0
a
8
=
1
0
a
9
=
1
0
a
11
=
0
0.0629540v
5
0.0799031v
4
+ ··· 0.215496v 1.65860
a
12
=
0.0629540v
5
+ 0.0799031v
4
+ ··· + 0.215496v + 1.65860
0.0629540v
5
0.0799031v
4
+ ··· 0.215496v 1.65860
a
4
=
v
0
a
7
=
1
0.0629540v
5
0.0799031v
4
+ ··· 0.215496v 2.65860
a
3
=
0.108959v
5
0.176755v
4
+ ··· + 3.28087v 0.0629540
0.326877v
5
+ 0.530266v
4
+ ··· 5.84262v + 0.188862
a
6
=
0.150121v
5
0.421308v
4
+ ··· 0.590799v + 0.891041
0.0629540v
5
0.0799031v
4
+ ··· 0.215496v 2.65860
a
2
=
0.600484v
5
1.68523v
4
+ ··· 2.36320v 1.43584
1.26392v
5
+ 3.45036v
4
+ ··· + 4.94189v + 3.53027
a
1
=
1
0.0629540v
5
+ 0.0799031v
4
+ ··· + 0.215496v + 2.65860
a
10
=
0.0629540v
5
0.0799031v
4
+ ··· 0.215496v 1.65860
0.0629540v
5
+ 0.0799031v
4
+ ··· + 0.215496v + 2.65860
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3042
413
v
5
8817
413
v
4
44523
413
v
3
68494
413
v
2
24042
413
v
18195
413
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
, c
8
u
6
c
5
(u
3
u
2
+ 1)
2
c
6
(u
3
+ u
2
+ 2u + 1)
2
c
7
, c
9
(u
2
+ u 1)
3
c
10
, c
11
, c
12
(u
2
u 1)
3
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
(y
3
y
2
+ 2y 1)
2
c
4
, c
8
y
6
c
7
, c
9
, c
10
c
11
, c
12
(y
2
3y + 1)
3
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.49186
a = 0
b = 0.618034
2.10041 19.6940
v = 0.082153 + 0.499284I
a = 0
b = 1.61803
5.85852 + 2.82812I 6.54788 4.14885I
v = 0.082153 0.499284I
a = 0
b = 1.61803
5.85852 2.82812I 6.54788 + 4.14885I
v = 0.217660
a = 0
b = 1.61803
9.99610 38.1750
v = 0.56309 + 3.42214I
a = 0
b = 0.618034
2.03717 + 2.82812I 0.982489 + 0.847836I
v = 0.56309 3.42214I
a = 0
b = 0.618034
2.03717 2.82812I 0.982489 0.847836I
17
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u
3
u
2
+ 2u 1)
2
(u
41
+ 10u
40
+ ··· + 124u + 1)
c
2
(u 1)(u
3
+ u
2
1)
2
(u
41
+ 4u
40
+ ··· 8u + 1)
c
3
(u 1)(u
3
u
2
+ 2u 1)
2
(u
41
2u
40
+ ··· 56802u + 4129)
c
4
u
6
(u 1)(u
41
+ 4u
40
+ ··· + 544u + 64)
c
5
(u + 1)(u
3
u
2
+ 1)
2
(u
41
+ 4u
40
+ ··· 8u + 1)
c
6
(u + 1)(u
3
+ u
2
+ 2u + 1)
2
(u
41
+ 10u
40
+ ··· + 124u + 1)
c
7
u(u
2
+ u 1)
3
(u
41
+ 4u
40
+ ··· 2u + 2)
c
8
u
6
(u + 1)(u
41
+ 4u
40
+ ··· + 544u + 64)
c
9
(u 1)(u
2
+ u 1)
3
(u
41
5u
40
+ ··· 11u 1)
c
10
u(u
2
u 1)
3
(u
41
+ 4u
40
+ ··· 2u + 2)
c
11
, c
12
(u + 1)(u
2
u 1)
3
(u
41
5u
40
+ ··· 11u 1)
18
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y 1)(y
3
+ 3y
2
+ 2y 1)
2
(y
41
+ 46y
40
+ ··· + 12420y 1)
c
2
, c
5
(y 1)(y
3
y
2
+ 2y 1)
2
(y
41
10y
40
+ ··· + 124y 1)
c
3
(y 1)(y
3
+ 3y
2
+ 2y 1)
2
· (y
41
+ 106y
40
+ ··· + 3427830276y 17048641)
c
4
, c
8
y
6
(y 1)(y
41
36y
40
+ ··· + 46080y 4096)
c
7
, c
10
y(y
2
3y + 1)
3
(y
41
+ 42y
39
+ ··· + 24y 4)
c
9
, c
11
, c
12
(y 1)(y
2
3y + 1)
3
(y
41
29y
40
+ ··· + 141y 1)
19