12n
0292
(K12n
0292
)
A knot diagram
1
Linearized knot diagam
3 6 7 9 2 5 11 4 12 7 9 10
Solving Sequence
4,9 5,11
12 10 1 8 7 3 6 2
c
4
c
11
c
9
c
12
c
8
c
7
c
3
c
6
c
2
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.88782 × 10
23
u
13
5.12763 × 10
24
u
12
+ ··· + 2.64685 × 10
25
b + 6.25813 × 10
25
,
7.50387 × 10
22
u
13
+ 1.45176 × 10
23
u
12
+ ··· + 5.29369 × 10
25
a + 2.07299 × 10
26
,
u
14
+ 13u
13
+ ··· 32u + 64i
I
u
2
= hu
7
+ u
6
3u
5
2u
4
+ 3u
3
+ b + 2, u
7
+ u
6
3u
5
2u
4
+ 3u
3
+ a + 2, u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1i
I
v
1
= ha, 251v
5
+ 1517v
4
+ 2839v
3
+ 6155v
2
+ 413b + 3834v + 768, v
6
+ 6v
5
+ 11v
4
+ 24v
3
+ 15v
2
+ 3v + 1i
* 3 irreducible components of dim
C
= 0, with total 28 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3.89 × 10
23
u
13
5.13 × 10
24
u
12
+ · · · + 2.65 × 10
25
b + 6.26 ×
10
25
, 7.50 × 10
22
u
13
+ 1.45 × 10
23
u
12
+ · · · + 5.29 × 10
25
a + 2.07 ×
10
26
, u
14
+ 13u
13
+ · · · 32u + 64i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
11
=
0.00141751u
13
0.00274243u
12
+ ··· 2.48245u 3.91596
0.0146885u
13
+ 0.193726u
12
+ ··· 5.56422u 2.36437
a
12
=
0.00141751u
13
0.00274243u
12
+ ··· 2.48245u 3.91596
0.0101820u
13
+ 0.140392u
12
+ ··· 4.97157u 3.36822
a
10
=
0.00113062u
13
0.0125080u
12
+ ··· 2.90912u 1.42506
0.0142858u
13
+ 0.186357u
12
+ ··· 5.61762u 1.88242
a
1
=
0.0210436u
13
0.266521u
12
+ ··· + 3.80828u 0.914411
0.0113459u
13
0.139334u
12
+ ··· + 2.52961u 1.68257
a
8
=
u
u
a
7
=
0.0181604u
13
+ 0.234062u
12
+ ··· 2.85095u 0.317190
0.00288324u
13
0.0324588u
12
+ ··· + 0.957338u 1.23160
a
3
=
0.00413905u
13
0.0558999u
12
+ ··· + 0.679785u + 1.52829
0.00466437u
13
0.0566994u
12
+ ··· + 0.968533u 0.525572
a
6
=
0.00922038u
13
+ 0.124297u
12
+ ··· 0.666608u 1.67826
0.00752145u
13
0.0902797u
12
+ ··· + 1.73607u 1.64474
a
2
=
0.0194805u
13
0.252321u
12
+ ··· + 2.53552u + 0.574034
0.0151718u
13
0.187049u
12
+ ··· + 2.63035u 1.84661
(ii) Obstruction class = 1
(iii) Cusp Shapes =
6397031736972176627304075
26468471689247551065891424
u
13
+
85735105186510577411506669
26468471689247551065891424
u
12
+
···
114004214719555496517015677
827139740288985970809107
u
55506637637800758601432107
827139740288985970809107
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
14
+ 9u
13
+ ··· + 16u + 1
c
2
, c
5
u
14
+ 3u
13
+ ··· + 8u + 1
c
3
u
14
61u
13
+ ··· + 58652u + 7489
c
4
, c
8
u
14
+ 13u
13
+ ··· 32u + 64
c
7
, c
10
u
14
+ 41u
13
+ ··· 640u + 256
c
9
, c
11
, c
12
u
14
21u
13
+ ··· + 17u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
14
13y
13
+ ··· 32y + 1
c
2
, c
5
y
14
9y
13
+ ··· 16y + 1
c
3
y
14
3381y
13
+ ··· 1276544916y + 56085121
c
4
, c
8
y
14
339y
13
+ ··· 62464y + 4096
c
7
, c
10
y
14
1029y
13
+ ··· 2539520y + 65536
c
9
, c
11
, c
12
y
14
121y
13
+ ··· 57y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.615322 + 0.027933I
a = 0.270955 + 0.334290I
b = 0.491780 0.018263I
0.755939 0.001558I 11.59104 + 0.05980I
u = 0.615322 0.027933I
a = 0.270955 0.334290I
b = 0.491780 + 0.018263I
0.755939 + 0.001558I 11.59104 0.05980I
u = 0.009870 + 0.545956I
a = 0.167508 + 0.354571I
b = 0.343156 + 1.170610I
2.39955 + 2.72347I 2.27719 1.42875I
u = 0.009870 0.545956I
a = 0.167508 0.354571I
b = 0.343156 1.170610I
2.39955 2.72347I 2.27719 + 1.42875I
u = 0.538862
a = 2.91010
b = 0.103022
10.2297 34.5740
u = 0.527756
a = 0.348493
b = 0.450251
0.765092 12.2670
u = 0.328130
a = 2.96230
b = 3.66807
2.58775 102.750
u = 2.36859 + 0.76389I
a = 0.286166 0.684183I
b = 0.464252 + 0.349923I
3.81801 4.65772I 14.3487 + 2.2929I
u = 2.36859 0.76389I
a = 0.286166 + 0.684183I
b = 0.464252 0.349923I
3.81801 + 4.65772I 14.3487 2.2929I
u = 1.88270 + 1.66535I
a = 0.845008 0.271270I
b = 2.08577 0.29493I
15.9880 + 11.7884I 14.3165 4.7631I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.88270 1.66535I
a = 0.845008 + 0.271270I
b = 2.08577 + 0.29493I
15.9880 11.7884I 14.3165 + 4.7631I
u = 2.40458 + 1.69377I
a = 0.839800 0.202162I
b = 2.14114 0.18650I
17.5291 4.7891I 13.20379 + 0.61326I
u = 2.40458 1.69377I
a = 0.839800 + 0.202162I
b = 2.14114 + 0.18650I
17.5291 + 4.7891I 13.20379 0.61326I
u = 17.9093
a = 0.565105
b = 2.35407
6.82503 0
6
II. I
u
2
= hu
7
+ u
6
3u
5
2u
4
+ 3u
3
+ b + 2, u
7
+ u
6
3u
5
2u
4
+ 3u
3
+ a +
2, u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
11
=
u
7
u
6
+ 3u
5
+ 2u
4
3u
3
2
u
7
u
6
+ 3u
5
+ 2u
4
3u
3
2
a
12
=
u
7
u
6
+ 3u
5
+ 2u
4
3u
3
2
u
7
u
6
+ 3u
5
+ 2u
4
3u
3
u 2
a
10
=
u
7
u
6
+ 3u
5
+ 2u
4
3u
3
2
u
7
u
6
+ 3u
5
+ 2u
4
3u
3
2
a
1
=
0
u
a
8
=
u
u
a
7
=
u
u
a
3
=
u
2
+ 1
u
2
a
6
=
u
3
+ 2u
u
5
+ u
3
+ u
a
2
=
u
5
2u
3
+ u
u
5
u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
7
+ 8u
6
18u
5
12u
4
+ 7u
3
3u
2
+ 12u 3
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
2
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
3
, c
4
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
5
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
6
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
7
, c
10
u
8
c
8
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
9
(u 1)
8
c
11
, c
12
(u + 1)
8
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
2
, c
5
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
3
, c
4
, c
8
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
7
, c
10
y
8
c
9
, c
11
, c
12
(y 1)
8
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 0.805639 + 0.183365I
b = 0.805639 + 0.183365I
2.68559 1.13123I 13.78185 + 1.82144I
u = 1.180120 0.268597I
a = 0.805639 0.183365I
b = 0.805639 0.183365I
2.68559 + 1.13123I 13.78185 1.82144I
u = 0.108090 + 0.747508I
a = 0.189481 + 1.310380I
b = 0.189481 + 1.310380I
0.51448 2.57849I 9.42408 + 5.06085I
u = 0.108090 0.747508I
a = 0.189481 1.310380I
b = 0.189481 1.310380I
0.51448 + 2.57849I 9.42408 5.06085I
u = 1.37100
a = 0.729394
b = 0.729394
8.14766 18.0480
u = 1.334530 + 0.318930I
a = 0.708845 + 0.169402I
b = 0.708845 + 0.169402I
4.02461 + 6.44354I 15.1664 7.9255I
u = 1.334530 0.318930I
a = 0.708845 0.169402I
b = 0.708845 0.169402I
4.02461 6.44354I 15.1664 + 7.9255I
u = 0.463640
a = 2.15684
b = 2.15684
2.48997 1.79260
10
III.
I
v
1
= ha, 251v
5
+1517v
4
+· · ·+413b+768, v
6
+6v
5
+11v
4
+24v
3
+15v
2
+3v+1i
(i) Arc colorings
a
4
=
1
0
a
9
=
v
0
a
5
=
1
0
a
11
=
0
0.607748v
5
3.67312v
4
+ ··· 9.28329v 1.85956
a
12
=
0.0290557v
5
+ 0.0242131v
4
+ ··· 0.687651v 0.0266344
0.607748v
5
3.67312v
4
+ ··· 9.28329v 1.85956
a
10
=
0.0290557v
5
0.0242131v
4
+ ··· + 0.687651v + 0.0266344
0.392252v
5
2.32688v
4
+ ··· 5.71671v 1.14044
a
1
=
v
0.392252v
5
2.32688v
4
+ ··· 5.71671v 1.14044
a
8
=
v
0
a
7
=
v
0.392252v
5
+ 2.32688v
4
+ ··· + 5.71671v + 1.14044
a
3
=
0.0266344v
5
+ 0.188862v
4
+ ··· + 0.0363196v + 1.39225
0.421308v
5
2.35109v
4
+ ··· 3.02906v + 0.886199
a
6
=
0.392252v
5
+ 2.32688v
4
+ ··· + 6.71671v + 1.14044
0.392252v
5
+ 2.32688v
4
+ ··· + 5.71671v + 1.14044
a
2
=
0.569007v
5
+ 3.30751v
4
+ ··· + 6.86683v + 1.56174
0.0290557v
5
0.0242131v
4
+ ··· + 2.68765v + 1.02663
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1191
413
v
5
+
6981
413
v
4
+
11931
413
v
3
+
26206
413
v
2
+
13113
413
v
8216
413
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
, c
8
u
6
c
5
(u
3
u
2
+ 1)
2
c
6
(u
3
+ u
2
+ 2u + 1)
2
c
7
, c
9
(u
2
+ u 1)
3
c
10
, c
11
, c
12
(u
2
u 1)
3
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
(y
3
y
2
+ 2y 1)
2
c
4
, c
8
y
6
c
7
, c
9
, c
10
c
11
, c
12
(y
2
3y + 1)
3
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.670304
a = 0
b = 0.922021
2.10041 18.3450
v = 0.046814 + 0.284512I
a = 0
b = 0.34801 2.11500I
2.03717 2.82812I 25.9630 + 6.8067I
v = 0.046814 0.284512I
a = 0
b = 0.34801 + 2.11500I
2.03717 + 2.82812I 25.9630 6.8067I
v = 0.32087 + 1.95007I
a = 0
b = 0.132927 + 0.807858I
5.85852 2.82812I 18.4326 + 1.8100I
v = 0.32087 1.95007I
a = 0
b = 0.132927 0.807858I
5.85852 + 2.82812I 18.4326 1.8100I
v = 4.59433
a = 0
b = 0.352181
9.99610 0.135730
14
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
3
u
2
+ 2u 1)
2
· (u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
14
+ 9u
13
+ ··· + 16u + 1)
c
2
(u
3
+ u
2
1)
2
(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
· (u
14
+ 3u
13
+ ··· + 8u + 1)
c
3
(u
3
u
2
+ 2u 1)
2
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
· (u
14
61u
13
+ ··· + 58652u + 7489)
c
4
u
6
(u
8
+ u
7
+ ··· + 2u 1)(u
14
+ 13u
13
+ ··· 32u + 64)
c
5
(u
3
u
2
+ 1)
2
(u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
· (u
14
+ 3u
13
+ ··· + 8u + 1)
c
6
(u
3
+ u
2
+ 2u + 1)
2
· (u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
14
+ 9u
13
+ ··· + 16u + 1)
c
7
u
8
(u
2
+ u 1)
3
(u
14
+ 41u
13
+ ··· 640u + 256)
c
8
u
6
(u
8
u
7
+ ··· 2u 1)(u
14
+ 13u
13
+ ··· 32u + 64)
c
9
((u 1)
8
)(u
2
+ u 1)
3
(u
14
21u
13
+ ··· + 17u + 1)
c
10
u
8
(u
2
u 1)
3
(u
14
+ 41u
13
+ ··· 640u + 256)
c
11
, c
12
((u + 1)
8
)(u
2
u 1)
3
(u
14
21u
13
+ ··· + 17u + 1)
15
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
· (y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
14
13y
13
+ ··· 32y + 1)
c
2
, c
5
(y
3
y
2
+ 2y 1)
2
· (y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
14
9y
13
+ ··· 16y + 1)
c
3
(y
3
+ 3y
2
+ 2y 1)
2
· (y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
14
3381y
13
+ ··· 1276544916y + 56085121)
c
4
, c
8
y
6
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
14
339y
13
+ ··· 62464y + 4096)
c
7
, c
10
y
8
(y
2
3y + 1)
3
(y
14
1029y
13
+ ··· 2539520y + 65536)
c
9
, c
11
, c
12
((y 1)
8
)(y
2
3y + 1)
3
(y
14
121y
13
+ ··· 57y + 1)
16