12n
0294
(K12n
0294
)
A knot diagram
1
Linearized knot diagam
3 6 7 11 10 2 11 12 5 6 1 8
Solving Sequence
2,6
3
7,11
8 1 10 5 4 12 9
c
2
c
6
c
7
c
1
c
10
c
5
c
4
c
12
c
8
c
3
, c
9
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
10
+ u
9
+ 5u
8
+ 4u
7
+ 9u
6
+ 6u
5
+ 3u
4
+ 3u
3
5u
2
+ 2b 1,
u
10
+ u
9
+ 5u
8
+ 4u
7
+ 9u
6
+ 6u
5
+ 3u
4
+ 3u
3
7u
2
+ 2a 3,
u
12
+ u
11
+ 5u
10
+ 4u
9
+ 10u
8
+ 7u
7
+ 7u
6
+ 6u
5
2u
4
+ 3u
3
3u
2
1i
I
u
2
= h−78963686u
21
109276521u
20
+ ··· + 272347738b + 755541991,
207732146u
21
+ 642690277u
20
+ ··· + 1906434166a + 152323303, u
22
+ 2u
21
+ ··· + u + 7i
I
u
3
= hb a u, a
2
+ 2u, u
2
u + 1i
I
u
4
= hb + u, a, u
2
+ u + 1i
I
u
5
= hb a + 1, a
2
+ 2u, u
2
u + 1i
I
u
6
= hb + 1, a, u
2
+ u + 1i
* 6 irreducible components of dim
C
= 0, with total 46 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
10
+ u
9
+ · · · + 2b 1, u
10
+ u
9
+ · · · + 2a 3, u
12
+ u
11
+ · · · 3u
2
1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
a
11
=
1
2
u
10
1
2
u
9
+ ··· +
7
2
u
2
+
3
2
1
2
u
10
1
2
u
9
+ ··· +
5
2
u
2
+
1
2
a
8
=
1
2
u
11
+
1
2
u
10
+ ··· u
5
7
2
u
3
1
2
u
11
+
1
2
u
10
+ ···
3
2
u
3
+ u
a
1
=
u
2
+ 1
u
4
a
10
=
1
2
u
10
1
2
u
9
+ ··· +
7
2
u
2
+
3
2
1
2
u
10
1
2
u
9
+ ··· +
5
2
u
2
+ 1
a
5
=
1
2
u
10
+ u
9
+ ···
1
2
u
1
2
1
2
u
10
+ u
9
+ ···
1
2
u 1
a
4
=
u
4
+ u
2
+ 1
u
4
a
12
=
1
2
u
10
1
2
u
9
+ ··· +
5
2
u
2
+
3
2
1
2
u
10
1
2
u
9
+ ··· +
5
2
u
2
+
1
2
a
9
=
1
2
u
9
1
2
u
8
+ ··· u
3
+
3
2
u
1
2
u
9
1
2
u
8
+ ··· + u
3
+
3
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 5u
11
3u
10
21u
9
9u
8
34u
7
12u
6
8u
5
10u
4
+ 26u
3
12u
2
+ 13u 9
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
12
+ 9u
11
+ ··· + 6u + 1
c
2
, c
6
, c
8
c
12
u
12
u
11
+ 5u
10
4u
9
+ 10u
8
7u
7
+ 7u
6
6u
5
2u
4
3u
3
3u
2
1
c
3
, c
7
u
12
+ u
11
+ ··· u 2
c
4
u
12
+ 15u
11
+ ··· + 596u + 32
c
5
, c
9
, c
10
u
12
5u
11
+ ··· 4u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
12
7y
11
+ ··· 10y + 1
c
2
, c
6
, c
8
c
12
y
12
+ 9y
11
+ ··· + 6y + 1
c
3
, c
7
y
12
23y
11
+ ··· + 51y + 4
c
4
y
12
35y
11
+ ··· 202128y + 1024
c
5
, c
9
, c
10
y
12
15y
11
+ ··· + 16y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.07086
a = 1.66252
b = 0.484232
12.1281 5.69090
u = 0.296087 + 0.741679I
a = 0.55750 + 1.66481I
b = 1.09508 + 1.22561I
5.57527 + 2.63814I 11.42884 2.06673I
u = 0.296087 0.741679I
a = 0.55750 1.66481I
b = 1.09508 1.22561I
5.57527 2.63814I 11.42884 + 2.06673I
u = 0.162478 + 1.257750I
a = 0.651223 + 0.357840I
b = 0.095679 + 0.766555I
5.08721 2.66459I 10.23667 + 3.12657I
u = 0.162478 1.257750I
a = 0.651223 0.357840I
b = 0.095679 0.766555I
5.08721 + 2.66459I 10.23667 3.12657I
u = 0.635067
a = 1.51509
b = 0.111783
1.87851 4.23810
u = 0.416797 + 1.329220I
a = 0.199126 0.960314I
b = 0.39398 2.06834I
9.65412 + 7.95397I 10.78779 5.64533I
u = 0.416797 1.329220I
a = 0.199126 + 0.960314I
b = 0.39398 + 2.06834I
9.65412 7.95397I 10.78779 + 5.64533I
u = 0.206233 + 0.541920I
a = 0.438428 0.668694I
b = 0.310427 0.445170I
0.276323 1.063990I 4.38658 + 6.25986I
u = 0.206233 0.541920I
a = 0.438428 + 0.668694I
b = 0.310427 + 0.445170I
0.276323 + 1.063990I 4.38658 6.25986I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.62627 + 1.34351I
a = 0.380614 + 1.171480I
b = 0.79343 + 2.85430I
19.3715 11.9727I 10.19562 + 5.57211I
u = 0.62627 1.34351I
a = 0.380614 1.171480I
b = 0.79343 2.85430I
19.3715 + 11.9727I 10.19562 5.57211I
6
II.
I
u
2
= h−7.90 × 10
7
u
21
1.09 × 10
8
u
20
+ · · · + 2.72 × 10
8
b + 7.56 × 10
8
, 2.08 ×
10
8
u
21
+ 6.43 × 10
8
u
20
+ · · · + 1.91 × 10
9
a + 1.52 × 10
8
, u
22
+ 2u
21
+ · · · + u + 7i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
a
11
=
0.108964u
21
0.337116u
20
+ ··· 2.45446u 0.0798996
0.289937u
21
+ 0.401239u
20
+ ··· 0.514832u 2.77418
a
8
=
0.0918453u
21
+ 0.174181u
20
+ ··· + 0.699627u 0.598884
0.113601u
21
+ 0.0746372u
20
+ ··· + 2.03280u 0.388234
a
1
=
u
2
+ 1
u
4
a
10
=
0.108964u
21
0.337116u
20
+ ··· 2.45446u 0.0798996
0.308189u
21
+ 0.280109u
20
+ ··· 1.39677u 3.60850
a
5
=
0.0436157u
21
+ 0.236816u
20
+ ··· + 0.624511u + 1.17524
0.202828u
21
+ 0.763930u
20
+ ··· + 1.77903u + 1.62345
a
4
=
u
4
+ u
2
+ 1
u
4
a
12
=
0.0937967u
21
+ 0.208563u
20
+ ··· 0.352346u + 1.14461
0.592510u
21
+ 1.09915u
20
+ ··· + 0.751139u 3.19574
a
9
=
0.121487u
21
+ 0.427747u
20
+ ··· + 2.44535u + 0.605555
0.158323u
21
+ 0.138552u
20
+ ··· + 1.87374u + 4.80979
(ii) Obstruction class = 1
(iii) Cusp Shapes =
89419702
136173869
u
21
42120566
136173869
u
20
+ ··· +
1416145048
136173869
u +
452453139
136173869
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
22
+ 14u
21
+ ··· + 307u + 49
c
2
, c
6
, c
8
c
12
u
22
2u
21
+ ··· u + 7
c
3
, c
7
u
22
+ 2u
21
+ ··· 145u + 35
c
4
(u
11
6u
10
+ ··· 48u + 32)
2
c
5
, c
9
, c
10
(u
11
+ 2u
10
7u
9
14u
8
+ 17u
7
+ 32u
6
20u
5
30u
4
+ 9u
3
+ 8u
2
2)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
22
10y
21
+ ··· 14085y + 2401
c
2
, c
6
, c
8
c
12
y
22
+ 14y
21
+ ··· + 307y + 49
c
3
, c
7
y
22
34y
21
+ ··· + 17965y + 1225
c
4
(y
11
58y
10
+ ··· + 12928y 1024)
2
c
5
, c
9
, c
10
(y
11
18y
10
+ ··· + 32y 4)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.315297 + 0.937809I
a = 0.373766 + 0.436547I
b = 0.57981 + 1.45156I
0.82409 + 3.69934I 10.27594 2.30433I
u = 0.315297 0.937809I
a = 0.373766 0.436547I
b = 0.57981 1.45156I
0.82409 3.69934I 10.27594 + 2.30433I
u = 0.621678 + 0.900743I
a = 0.433725 + 0.285994I
b = 0.477184 0.282729I
0.82409 3.69934I 10.27594 + 2.30433I
u = 0.621678 0.900743I
a = 0.433725 0.285994I
b = 0.477184 + 0.282729I
0.82409 + 3.69934I 10.27594 2.30433I
u = 1.140860 + 0.146410I
a = 1.58475 0.10382I
b = 0.383248 + 0.166816I
16.3894 + 5.6976I 8.38395 2.57135I
u = 1.140860 0.146410I
a = 1.58475 + 0.10382I
b = 0.383248 0.166816I
16.3894 5.6976I 8.38395 + 2.57135I
u = 0.528041 + 0.663736I
a = 0.036886 0.596779I
b = 0.411020 0.383825I
0.153907 1.029650I 5.69847 + 5.62903I
u = 0.528041 0.663736I
a = 0.036886 + 0.596779I
b = 0.411020 + 0.383825I
0.153907 + 1.029650I 5.69847 5.62903I
u = 0.797910 + 0.128505I
a = 1.42715 + 0.64453I
b = 0.302057 + 0.565900I
5.23581 + 3.47501I 8.51244 3.77183I
u = 0.797910 0.128505I
a = 1.42715 0.64453I
b = 0.302057 0.565900I
5.23581 3.47501I 8.51244 + 3.77183I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.026101 + 1.195750I
a = 0.193214 1.265770I
b = 0.79244 2.46937I
7.69899 1.57384I 11.44703 + 1.61053I
u = 0.026101 1.195750I
a = 0.193214 + 1.265770I
b = 0.79244 + 2.46937I
7.69899 + 1.57384I 11.44703 1.61053I
u = 0.306447 + 1.162800I
a = 0.007196 + 1.052430I
b = 0.56018 + 1.99198I
5.23581 + 3.47501I 8.51244 3.77183I
u = 0.306447 1.162800I
a = 0.007196 1.052430I
b = 0.56018 1.99198I
5.23581 3.47501I 8.51244 + 3.77183I
u = 0.174005 + 0.725075I
a = 0.560735 0.384864I
b = 0.654598 0.645346I
0.153907 1.029650I 5.69847 + 5.62903I
u = 0.174005 0.725075I
a = 0.560735 + 0.384864I
b = 0.654598 + 0.645346I
0.153907 + 1.029650I 5.69847 5.62903I
u = 0.648660 + 1.107420I
a = 0.771605 0.910213I
b = 0.461513 1.169360I
7.69899 + 1.57384I 11.44703 1.61053I
u = 0.648660 1.107420I
a = 0.771605 + 0.910213I
b = 0.461513 + 1.169360I
7.69899 1.57384I 11.44703 + 1.61053I
u = 0.53111 + 1.36431I
a = 0.379457 1.188610I
b = 0.55682 2.99037I
16.3894 5.6976I 8.38395 + 2.57135I
u = 0.53111 1.36431I
a = 0.379457 + 1.188610I
b = 0.55682 + 2.99037I
16.3894 + 5.6976I 8.38395 2.57135I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.44674 + 1.47157I
a = 0.362471 + 1.193990I
b = 0.29049 + 2.82389I
17.8360 11.36432 + 0.I
u = 0.44674 1.47157I
a = 0.362471 1.193990I
b = 0.29049 2.82389I
17.8360 11.36432 + 0.I
12
III. I
u
3
= hb a u, a
2
+ 2u, u
2
u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u + 1
a
7
=
u
u
a
11
=
a
a + u
a
8
=
au a + u
au a + u 1
a
1
=
u
u
a
10
=
a
au + 2a + u
a
5
=
2u + 2
au a 3u + 2
a
4
=
0
u
a
12
=
a + 1
a + u + 1
a
9
=
a
a u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u 4
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
8
c
11
(u
2
u + 1)
2
c
3
, c
6
, c
7
c
12
(u
2
+ u + 1)
2
c
4
, c
5
, c
9
c
10
(u
2
2)
2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
8
c
11
, c
12
(y
2
+ y + 1)
2
c
4
, c
5
, c
9
c
10
(y 2)
4
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.707110 1.224740I
b = 1.207110 0.358719I
4.93480 + 4.05977I 8.00000 6.92820I
u = 0.500000 + 0.866025I
a = 0.707110 + 1.224740I
b = 0.20711 + 2.09077I
4.93480 + 4.05977I 8.00000 6.92820I
u = 0.500000 0.866025I
a = 0.707110 + 1.224740I
b = 1.207110 + 0.358719I
4.93480 4.05977I 8.00000 + 6.92820I
u = 0.500000 0.866025I
a = 0.707110 1.224740I
b = 0.20711 2.09077I
4.93480 4.05977I 8.00000 + 6.92820I
16
IV. I
u
4
= hb + u, a, u
2
+ u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u + 1
a
7
=
u
u
a
11
=
0
u
a
8
=
u
u + 1
a
1
=
u
u
a
10
=
0
u
a
5
=
0
u
a
4
=
0
u
a
12
=
1
u + 1
a
9
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u + 4
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
11
, c
12
u
2
u + 1
c
2
, c
8
u
2
+ u + 1
c
4
, c
5
, c
9
c
10
u
2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
8
c
11
, c
12
y
2
+ y + 1
c
4
, c
5
, c
9
c
10
y
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0
b = 0.500000 0.866025I
4.05977I 0. + 6.92820I
u = 0.500000 0.866025I
a = 0
b = 0.500000 + 0.866025I
4.05977I 0. 6.92820I
20
V. I
u
5
= hb a + 1, a
2
+ 2u, u
2
u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u + 1
a
7
=
u
u
a
11
=
a
a 1
a
8
=
au + u
au + 2u
a
1
=
u
u
a
10
=
a
au + 2a 1
a
5
=
2u + 2
au 3u + 2
a
4
=
0
u
a
12
=
a + u 1
a + u 2
a
9
=
a
a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
8
c
11
(u
2
u + 1)
2
c
3
, c
6
, c
7
c
12
(u
2
+ u + 1)
2
c
4
, c
5
, c
9
c
10
(u
2
2)
2
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
8
c
11
, c
12
(y
2
+ y + 1)
2
c
4
, c
5
, c
9
c
10
(y 2)
4
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.707110 1.224740I
b = 0.292893 1.224750I
4.93480 8.00000
u = 0.500000 + 0.866025I
a = 0.707110 + 1.224740I
b = 1.70711 + 1.22474I
4.93480 8.00000
u = 0.500000 0.866025I
a = 0.707110 + 1.224740I
b = 0.292893 + 1.224750I
4.93480 8.00000
u = 0.500000 0.866025I
a = 0.707110 1.224740I
b = 1.70711 1.22474I
4.93480 8.00000
24
VI. I
u
6
= hb + 1, a, u
2
+ u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u + 1
a
7
=
u
u
a
11
=
0
1
a
8
=
u
2u
a
1
=
u
u
a
10
=
0
1
a
5
=
0
u
a
4
=
0
u
a
12
=
u 1
u 2
a
9
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
11
, c
12
u
2
u + 1
c
2
, c
8
u
2
+ u + 1
c
4
, c
5
, c
9
c
10
u
2
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
8
c
11
, c
12
y
2
+ y + 1
c
4
, c
5
, c
9
c
10
y
2
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0
b = 1.00000
0 6.00000
u = 0.500000 0.866025I
a = 0
b = 1.00000
0 6.00000
28
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
((u
2
u + 1)
6
)(u
12
+ 9u
11
+ ··· + 6u + 1)
· (u
22
+ 14u
21
+ ··· + 307u + 49)
c
2
, c
8
(u
2
u + 1)
4
(u
2
+ u + 1)
2
· (u
12
u
11
+ 5u
10
4u
9
+ 10u
8
7u
7
+ 7u
6
6u
5
2u
4
3u
3
3u
2
1)
· (u
22
2u
21
+ ··· u + 7)
c
3
, c
7
((u
2
u + 1)
2
)(u
2
+ u + 1)
4
(u
12
+ u
11
+ ··· u 2)
· (u
22
+ 2u
21
+ ··· 145u + 35)
c
4
u
4
(u
2
2)
4
(u
11
6u
10
+ ··· 48u + 32)
2
· (u
12
+ 15u
11
+ ··· + 596u + 32)
c
5
, c
9
, c
10
u
4
(u
2
2)
4
· (u
11
+ 2u
10
7u
9
14u
8
+ 17u
7
+ 32u
6
20u
5
30u
4
+ 9u
3
+ 8u
2
2)
2
· (u
12
5u
11
+ ··· 4u 4)
c
6
, c
12
(u
2
u + 1)
2
(u
2
+ u + 1)
4
· (u
12
u
11
+ 5u
10
4u
9
+ 10u
8
7u
7
+ 7u
6
6u
5
2u
4
3u
3
3u
2
1)
· (u
22
2u
21
+ ··· u + 7)
29
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
11
((y
2
+ y + 1)
6
)(y
12
7y
11
+ ··· 10y + 1)
· (y
22
10y
21
+ ··· 14085y + 2401)
c
2
, c
6
, c
8
c
12
((y
2
+ y + 1)
6
)(y
12
+ 9y
11
+ ··· + 6y + 1)
· (y
22
+ 14y
21
+ ··· + 307y + 49)
c
3
, c
7
((y
2
+ y + 1)
6
)(y
12
23y
11
+ ··· + 51y + 4)
· (y
22
34y
21
+ ··· + 17965y + 1225)
c
4
y
4
(y 2)
8
(y
11
58y
10
+ ··· + 12928y 1024)
2
· (y
12
35y
11
+ ··· 202128y + 1024)
c
5
, c
9
, c
10
y
4
(y 2)
8
(y
11
18y
10
+ ··· + 32y 4)
2
· (y
12
15y
11
+ ··· + 16y + 16)
30