12n
0298
(K12n
0298
)
A knot diagram
1
Linearized knot diagam
3 6 7 11 8 2 12 5 7 6 9 10
Solving Sequence
2,6
3 7
4,10
11 1 9 12 8 5
c
2
c
6
c
3
c
10
c
1
c
9
c
12
c
7
c
5
c
4
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1.39637 × 10
86
u
63
+ 5.43528 × 10
86
u
62
+ ··· + 2.96182 × 10
85
b 1.86518 × 10
86
,
2.24145 × 10
86
u
63
9.03174 × 10
86
u
62
+ ··· + 2.96182 × 10
85
a 2.29298 × 10
85
, u
64
+ 4u
63
+ ··· 4u + 1i
I
u
2
= h2u
19
+ 7u
17
+ ··· + b 4u, 2u
19
+ u
18
+ ··· + a 1, u
20
u
19
+ ··· 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 84 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h1.40×10
86
u
63
+5.44×10
86
u
62
+· · ·+2.96×10
85
b1.87×10
86
, 2.24×
10
86
u
63
9.03×10
86
u
62
+· · ·+2.96×10
85
a2.29×10
85
, u
64
+4u
63
+· · ·4u+1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
a
4
=
u
4
+ u
2
+ 1
u
4
a
10
=
7.56782u
63
+ 30.4939u
62
+ ··· + 24.0222u + 0.774178
4.71457u
63
18.3512u
62
+ ··· 27.2378u + 6.29741
a
11
=
7.56782u
63
+ 30.4939u
62
+ ··· + 24.0222u + 0.774178
6.38660u
63
24.4128u
62
+ ··· 33.9152u + 6.07481
a
1
=
u
2
+ 1
u
4
a
9
=
3.86933u
63
+ 16.0937u
62
+ ··· + 10.6018u + 1.05869
8.41306u
63
32.7513u
62
+ ··· 40.6582u + 6.58192
a
12
=
6.42367u
63
+ 32.1547u
62
+ ··· 45.0142u + 17.0072
3.79100u
63
+ 16.1352u
62
+ ··· + 0.840596u + 4.38519
a
8
=
0.562618u
63
+ 2.63121u
62
+ ··· 36.1172u + 8.44512
4.32626u
63
+ 17.5719u
62
+ ··· + 18.4608u 1.19617
a
5
=
5.84919u
63
+ 21.5137u
62
+ ··· + 53.4241u 7.65911
1.92460u
63
+ 7.73661u
62
+ ··· + 10.1183u 1.34592
(ii) Obstruction class = 1
(iii) Cusp Shapes = 30.7036u
63
+ 141.686u
62
+ ··· 73.0395u + 38.2307
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
64
+ 14u
63
+ ··· + 30u + 1
c
2
, c
6
u
64
4u
63
+ ··· + 4u + 1
c
3
u
64
+ 4u
63
+ ··· 4232566u + 8381893
c
4
u
64
+ 3u
63
+ ··· 317686u + 108431
c
5
, c
8
u
64
+ u
63
+ ··· + 8u
2
+ 1
c
7
u
64
+ 3u
63
+ ··· 14u + 1
c
9
u
64
+ 15u
63
+ ··· + 1193304u + 134569
c
10
u
64
+ 2u
63
+ ··· 28804u + 319
c
11
u
64
13u
63
+ ··· 516u + 31
c
12
u
64
11u
63
+ ··· + 4233776u + 540971
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
64
+ 82y
63
+ ··· + 154y + 1
c
2
, c
6
y
64
+ 14y
63
+ ··· + 30y + 1
c
3
y
64
+ 162y
63
+ ··· + 4185418110089892y + 70256130263449
c
4
y
64
+ 29y
63
+ ··· + 248335976782y + 11757281761
c
5
, c
8
y
64
+ 43y
63
+ ··· + 16y + 1
c
7
y
64
+ 5y
63
+ ··· 30y + 1
c
9
y
64
59y
63
+ ··· 87140422306y + 18108815761
c
10
y
64
+ 100y
63
+ ··· 262631966y + 101761
c
11
y
64
+ y
63
+ ··· + 5676y + 961
c
12
y
64
91y
63
+ ··· 7005093425444y + 292649622841
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.939075 + 0.271602I
a = 0.482093 0.464401I
b = 0.755445 0.284336I
0.44441 3.98622I 0
u = 0.939075 0.271602I
a = 0.482093 + 0.464401I
b = 0.755445 + 0.284336I
0.44441 + 3.98622I 0
u = 0.722916 + 0.601079I
a = 0.123478 0.330623I
b = 1.32766 0.80295I
1.03187 6.00979I 0. + 8.60089I
u = 0.722916 0.601079I
a = 0.123478 + 0.330623I
b = 1.32766 + 0.80295I
1.03187 + 6.00979I 0. 8.60089I
u = 0.432677 + 0.976451I
a = 0.843388 0.347446I
b = 0.197103 + 0.398413I
2.46162 + 1.46729I 0
u = 0.432677 0.976451I
a = 0.843388 + 0.347446I
b = 0.197103 0.398413I
2.46162 1.46729I 0
u = 0.194061 + 1.056770I
a = 0.586720 + 0.232918I
b = 0.052356 0.350919I
1.71226 + 0.14587I 0
u = 0.194061 1.056770I
a = 0.586720 0.232918I
b = 0.052356 + 0.350919I
1.71226 0.14587I 0
u = 0.475448 + 0.789845I
a = 0.290628 0.808412I
b = 0.868055 0.780912I
0.01302 1.90453I 0. + 2.57583I
u = 0.475448 0.789845I
a = 0.290628 + 0.808412I
b = 0.868055 + 0.780912I
0.01302 + 1.90453I 0. 2.57583I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.791240 + 0.428776I
a = 0.912391 + 1.040550I
b = 0.676221 + 0.565206I
2.49559 1.05555I 7.00649 + 1.32061I
u = 0.791240 0.428776I
a = 0.912391 1.040550I
b = 0.676221 0.565206I
2.49559 + 1.05555I 7.00649 1.32061I
u = 0.400359 + 0.788642I
a = 0.069876 + 1.329720I
b = 1.035650 + 0.916049I
0.52477 + 4.45766I 3.10979 9.91982I
u = 0.400359 0.788642I
a = 0.069876 1.329720I
b = 1.035650 0.916049I
0.52477 4.45766I 3.10979 + 9.91982I
u = 0.299647 + 0.825342I
a = 0.912074 + 0.700445I
b = 1.95342 + 1.10428I
3.49922 2.68192I 5.19582 + 0.87569I
u = 0.299647 0.825342I
a = 0.912074 0.700445I
b = 1.95342 1.10428I
3.49922 + 2.68192I 5.19582 0.87569I
u = 0.589193 + 0.551154I
a = 0.85587 2.43022I
b = 0.536571 0.801267I
2.27399 + 6.14015I 2.22329 10.33949I
u = 0.589193 0.551154I
a = 0.85587 + 2.43022I
b = 0.536571 + 0.801267I
2.27399 6.14015I 2.22329 + 10.33949I
u = 0.274975 + 1.168590I
a = 0.0110651 + 0.0113996I
b = 0.306856 + 0.642395I
5.23856 0.57022I 0
u = 0.274975 1.168590I
a = 0.0110651 0.0113996I
b = 0.306856 0.642395I
5.23856 + 0.57022I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.457124 + 1.152150I
a = 0.645292 0.183503I
b = 1.24538 1.10620I
0.02531 3.74403I 0
u = 0.457124 1.152150I
a = 0.645292 + 0.183503I
b = 1.24538 + 1.10620I
0.02531 + 3.74403I 0
u = 0.879640 + 0.881204I
a = 0.79455 + 1.61194I
b = 1.45624 + 0.94426I
6.66965 5.86737I 0
u = 0.879640 0.881204I
a = 0.79455 1.61194I
b = 1.45624 0.94426I
6.66965 + 5.86737I 0
u = 0.838867 + 0.958647I
a = 1.35935 + 0.86354I
b = 1.99957 + 0.33680I
6.41424 0.52117I 0
u = 0.838867 0.958647I
a = 1.35935 0.86354I
b = 1.99957 0.33680I
6.41424 + 0.52117I 0
u = 0.897037 + 0.932073I
a = 1.13339 1.29721I
b = 1.76535 0.72437I
8.51868 + 3.30961I 0
u = 0.897037 0.932073I
a = 1.13339 + 1.29721I
b = 1.76535 + 0.72437I
8.51868 3.30961I 0
u = 0.530563 + 0.465648I
a = 0.472852 + 0.171059I
b = 1.121760 + 0.641421I
0.55435 + 2.88435I 4.59418 0.12217I
u = 0.530563 0.465648I
a = 0.472852 0.171059I
b = 1.121760 0.641421I
0.55435 2.88435I 4.59418 + 0.12217I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.385835 + 0.588474I
a = 0.836666 0.736399I
b = 0.811989 0.180829I
0.38260 1.61712I 2.69865 + 4.73413I
u = 0.385835 0.588474I
a = 0.836666 + 0.736399I
b = 0.811989 + 0.180829I
0.38260 + 1.61712I 2.69865 4.73413I
u = 1.026810 + 0.827404I
a = 0.507979 + 1.128420I
b = 1.29031 + 0.58664I
7.40053 0.12600I 0
u = 1.026810 0.827404I
a = 0.507979 1.128420I
b = 1.29031 0.58664I
7.40053 + 0.12600I 0
u = 0.488940 + 1.231620I
a = 0.531491 0.111009I
b = 1.041740 + 0.612916I
3.67677 + 9.30666I 0
u = 0.488940 1.231620I
a = 0.531491 + 0.111009I
b = 1.041740 0.612916I
3.67677 9.30666I 0
u = 0.063841 + 0.650559I
a = 0.415319 0.941017I
b = 0.556116 1.216000I
1.14528 1.52727I 4.52889 + 4.44249I
u = 0.063841 0.650559I
a = 0.415319 + 0.941017I
b = 0.556116 + 1.216000I
1.14528 + 1.52727I 4.52889 4.44249I
u = 1.037000 + 0.860981I
a = 1.10948 1.12589I
b = 1.60768 + 0.28265I
7.61657 + 8.96188I 0
u = 1.037000 0.860981I
a = 1.10948 + 1.12589I
b = 1.60768 0.28265I
7.61657 8.96188I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.026730 + 0.876368I
a = 1.16571 + 1.14718I
b = 1.66461 0.43980I
11.07350 2.80334I 0
u = 1.026730 0.876368I
a = 1.16571 1.14718I
b = 1.66461 + 0.43980I
11.07350 + 2.80334I 0
u = 0.931671 + 0.980831I
a = 0.964496 1.016020I
b = 1.62384 0.47553I
8.77138 + 3.50074I 0
u = 0.931671 0.980831I
a = 0.964496 + 1.016020I
b = 1.62384 + 0.47553I
8.77138 3.50074I 0
u = 0.987503 + 0.947834I
a = 0.788697 1.062230I
b = 1.48014 0.52580I
8.90447 + 3.52447I 0
u = 0.987503 0.947834I
a = 0.788697 + 1.062230I
b = 1.48014 + 0.52580I
8.90447 3.52447I 0
u = 0.045837 + 0.617197I
a = 1.26636 2.43670I
b = 0.525231 0.836008I
4.46639 4.92939I 10.22682 + 5.98582I
u = 0.045837 0.617197I
a = 1.26636 + 2.43670I
b = 0.525231 + 0.836008I
4.46639 + 4.92939I 10.22682 5.98582I
u = 1.078850 + 0.866107I
a = 1.51083 1.33022I
b = 2.08515 + 1.50091I
5.10332 3.48279I 0
u = 1.078850 0.866107I
a = 1.51083 + 1.33022I
b = 2.08515 1.50091I
5.10332 + 3.48279I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.173180 + 0.577072I
a = 0.03202 + 1.82163I
b = 0.96370 + 2.09264I
4.26610 + 5.45717I 10.43636 7.95059I
u = 0.173180 0.577072I
a = 0.03202 1.82163I
b = 0.96370 2.09264I
4.26610 5.45717I 10.43636 + 7.95059I
u = 0.916042 + 1.056350I
a = 0.83523 + 1.32696I
b = 2.38551 + 1.05444I
10.4719 + 9.8985I 0
u = 0.916042 1.056350I
a = 0.83523 1.32696I
b = 2.38551 1.05444I
10.4719 9.8985I 0
u = 0.909045 + 1.065430I
a = 0.88608 1.31653I
b = 2.29397 1.02161I
6.9320 16.0572I 0
u = 0.909045 1.065430I
a = 0.88608 + 1.31653I
b = 2.29397 + 1.02161I
6.9320 + 16.0572I 0
u = 0.893030 + 1.085020I
a = 0.944848 + 0.755591I
b = 1.58267 + 0.22697I
6.56784 6.89474I 0
u = 0.893030 1.085020I
a = 0.944848 0.755591I
b = 1.58267 0.22697I
6.56784 + 6.89474I 0
u = 0.96327 + 1.05484I
a = 0.81866 1.54930I
b = 3.05198 0.85138I
4.50809 3.90305I 0
u = 0.96327 1.05484I
a = 0.81866 + 1.54930I
b = 3.05198 + 0.85138I
4.50809 + 3.90305I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.121840 + 0.455209I
a = 1.85406 0.09378I
b = 0.819408 0.701563I
0.33452 1.86534I 2.56057 + 3.02633I
u = 0.121840 0.455209I
a = 1.85406 + 0.09378I
b = 0.819408 + 0.701563I
0.33452 + 1.86534I 2.56057 3.02633I
u = 0.230599 + 0.231903I
a = 2.65631 1.10766I
b = 0.885454 + 0.326045I
0.41148 + 2.24866I 3.48307 5.05352I
u = 0.230599 0.231903I
a = 2.65631 + 1.10766I
b = 0.885454 0.326045I
0.41148 2.24866I 3.48307 + 5.05352I
11
II.
I
u
2
= h2u
19
+7u
17
+· · ·+b4u, 2u
19
+u
18
+· · ·+a1, u
20
u
19
+· · ·2u+1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
a
4
=
u
4
+ u
2
+ 1
u
4
a
10
=
2u
19
u
18
+ ··· + 3u + 1
2u
19
7u
17
+ ··· 10u
2
+ 4u
a
11
=
2u
19
u
18
+ ··· + 3u + 1
2u
19
7u
17
+ ··· + 4u 1
a
1
=
u
2
+ 1
u
4
a
9
=
u
19
+ 4u
17
+ ··· + 5u 2
3u
19
+ u
18
+ ··· + 6u 3
a
12
=
6u
19
3u
18
+ ··· 4u
2
+ 5u
4u
19
3u
18
+ ··· + 9u 1
a
8
=
6u
19
+ 3u
18
+ ··· 9u + 4
3u
19
11u
17
+ ··· + 7u 3
a
5
=
3u
19
2u
18
+ ··· + 3u 2
5u
19
3u
18
+ ··· + 5u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 9u
19
4u
18
+ 34u
17
7u
16
+ 85u
15
23u
14
+ 161u
13
51u
12
+
214u
11
67u
10
+ 158u
9
55u
8
+ 43u
7
46u
6
26u
5
41u
4
8u
3
22u
2
u 16
12
(iv) u-Polynomials at the component
13
Crossings u-Polynomials at each crossing
c
1
u
20
9u
19
+ ··· 8u + 1
c
2
u
20
u
19
+ ··· 2u + 1
c
3
u
20
+ u
19
+ ··· 8u + 1
c
4
u
20
+ 4u
19
+ ··· + 2u + 1
c
5
u
20
+ 9u
18
+ ··· + 2u + 1
c
6
u
20
+ u
19
+ ··· + 2u + 1
c
7
u
20
+ 2u
19
+ ··· + 6u + 1
c
8
u
20
+ 9u
18
+ ··· 2u + 1
c
9
u
20
+ 6u
19
+ ··· + 2u + 1
c
10
u
20
+ u
19
+ ··· 4u + 1
c
11
u
20
+ 8u
19
+ ··· + 4u + 1
c
12
u
20
12u
19
+ ··· 6u + 1
14
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
+ 13y
19
+ ··· + 20y + 1
c
2
, c
6
y
20
+ 9y
19
+ ··· + 8y + 1
c
3
y
20
+ 29y
19
+ ··· 10y + 1
c
4
y
20
+ 4y
19
+ ··· 12y + 1
c
5
, c
8
y
20
+ 18y
19
+ ··· + 10y + 1
c
7
y
20
+ 2y
18
+ ··· 20y + 1
c
9
y
20
20y
19
+ ··· + 2y
2
+ 1
c
10
y
20
+ 15y
19
+ ··· 4y + 1
c
11
y
20
8y
19
+ ··· + 2y + 1
c
12
y
20
12y
19
+ ··· + 10y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.133168 + 1.051170I
a = 0.949802 + 0.057848I
b = 0.467686 + 0.288113I
1.35651 + 1.16657I 1.05283 4.51213I
u = 0.133168 1.051170I
a = 0.949802 0.057848I
b = 0.467686 0.288113I
1.35651 1.16657I 1.05283 + 4.51213I
u = 0.388238 + 1.004590I
a = 0.496532 + 0.200270I
b = 1.47658 + 0.60423I
0.87995 3.76439I 4.04375 + 6.88348I
u = 0.388238 1.004590I
a = 0.496532 0.200270I
b = 1.47658 0.60423I
0.87995 + 3.76439I 4.04375 6.88348I
u = 0.407946 + 0.770783I
a = 0.167116 0.458391I
b = 0.406625 + 0.480005I
0.149706 + 0.500341I 2.17204 + 0.29125I
u = 0.407946 0.770783I
a = 0.167116 + 0.458391I
b = 0.406625 0.480005I
0.149706 0.500341I 2.17204 0.29125I
u = 0.517514 + 1.067790I
a = 0.312393 0.547705I
b = 0.860626 0.777046I
4.91212 + 8.66631I 5.37283 6.56810I
u = 0.517514 1.067790I
a = 0.312393 + 0.547705I
b = 0.860626 + 0.777046I
4.91212 8.66631I 5.37283 + 6.56810I
u = 0.414696 + 1.121450I
a = 0.616873 0.475026I
b = 0.685695 1.098930I
5.57840 1.56382I 6.00081 + 3.18452I
u = 0.414696 1.121450I
a = 0.616873 + 0.475026I
b = 0.685695 + 1.098930I
5.57840 + 1.56382I 6.00081 3.18452I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.393897 + 0.665781I
a = 0.092647 0.940148I
b = 1.37333 0.87165I
0.11330 3.36458I 3.05713 + 6.74431I
u = 0.393897 0.665781I
a = 0.092647 + 0.940148I
b = 1.37333 + 0.87165I
0.11330 + 3.36458I 3.05713 6.74431I
u = 0.493601 + 0.555703I
a = 0.72132 + 1.24890I
b = 0.779779 + 0.032785I
3.21796 4.42430I 1.43749 + 3.47963I
u = 0.493601 0.555703I
a = 0.72132 1.24890I
b = 0.779779 0.032785I
3.21796 + 4.42430I 1.43749 3.47963I
u = 0.925814 + 0.939172I
a = 0.96685 1.16407I
b = 1.53715 0.69330I
7.91169 + 3.39538I 5.49582 2.79697I
u = 0.925814 0.939172I
a = 0.96685 + 1.16407I
b = 1.53715 + 0.69330I
7.91169 3.39538I 5.49582 + 2.79697I
u = 0.495885 + 0.454566I
a = 1.23104 + 1.75062I
b = 0.319624 + 1.323120I
3.23795 + 5.41696I 2.08175 6.69309I
u = 0.495885 0.454566I
a = 1.23104 1.75062I
b = 0.319624 1.323120I
3.23795 5.41696I 2.08175 + 6.69309I
u = 1.024260 + 0.937435I
a = 1.21615 + 1.40368I
b = 2.46000 0.55113I
4.95446 3.69253I 2.76469 + 12.91616I
u = 1.024260 0.937435I
a = 1.21615 1.40368I
b = 2.46000 + 0.55113I
4.95446 + 3.69253I 2.76469 12.91616I
18
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
20
9u
19
+ ··· 8u + 1)(u
64
+ 14u
63
+ ··· + 30u + 1)
c
2
(u
20
u
19
+ ··· 2u + 1)(u
64
4u
63
+ ··· + 4u + 1)
c
3
(u
20
+ u
19
+ ··· 8u + 1)(u
64
+ 4u
63
+ ··· 4232566u + 8381893)
c
4
(u
20
+ 4u
19
+ ··· + 2u + 1)(u
64
+ 3u
63
+ ··· 317686u + 108431)
c
5
(u
20
+ 9u
18
+ ··· + 2u + 1)(u
64
+ u
63
+ ··· + 8u
2
+ 1)
c
6
(u
20
+ u
19
+ ··· + 2u + 1)(u
64
4u
63
+ ··· + 4u + 1)
c
7
(u
20
+ 2u
19
+ ··· + 6u + 1)(u
64
+ 3u
63
+ ··· 14u + 1)
c
8
(u
20
+ 9u
18
+ ··· 2u + 1)(u
64
+ u
63
+ ··· + 8u
2
+ 1)
c
9
(u
20
+ 6u
19
+ ··· + 2u + 1)(u
64
+ 15u
63
+ ··· + 1193304u + 134569)
c
10
(u
20
+ u
19
+ ··· 4u + 1)(u
64
+ 2u
63
+ ··· 28804u + 319)
c
11
(u
20
+ 8u
19
+ ··· + 4u + 1)(u
64
13u
63
+ ··· 516u + 31)
c
12
(u
20
12u
19
+ ··· 6u + 1)(u
64
11u
63
+ ··· + 4233776u + 540971)
19
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
20
+ 13y
19
+ ··· + 20y + 1)(y
64
+ 82y
63
+ ··· + 154y + 1)
c
2
, c
6
(y
20
+ 9y
19
+ ··· + 8y + 1)(y
64
+ 14y
63
+ ··· + 30y + 1)
c
3
(y
20
+ 29y
19
+ ··· 10y + 1)
· (y
64
+ 162y
63
+ ··· + 4185418110089892y + 70256130263449)
c
4
(y
20
+ 4y
19
+ ··· 12y + 1)
· (y
64
+ 29y
63
+ ··· + 248335976782y + 11757281761)
c
5
, c
8
(y
20
+ 18y
19
+ ··· + 10y + 1)(y
64
+ 43y
63
+ ··· + 16y + 1)
c
7
(y
20
+ 2y
18
+ ··· 20y + 1)(y
64
+ 5y
63
+ ··· 30y + 1)
c
9
(y
20
20y
19
+ ··· + 2y
2
+ 1)
· (y
64
59y
63
+ ··· 87140422306y + 18108815761)
c
10
(y
20
+ 15y
19
+ ··· 4y + 1)
· (y
64
+ 100y
63
+ ··· 262631966y + 101761)
c
11
(y
20
8y
19
+ ··· + 2y + 1)(y
64
+ y
63
+ ··· + 5676y + 961)
c
12
(y
20
12y
19
+ ··· + 10y + 1)
· (y
64
91y
63
+ ··· 7005093425444y + 292649622841)
20