10
154
(K10n
7
)
A knot diagram
1
Linearized knot diagam
9 4 1 7 4 9 5 2 6 3
Solving Sequence
3,10
1 4
2,6
5 9 7 8
c
10
c
3
c
2
c
5
c
9
c
6
c
7
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
5
+ 2u
4
+ u
3
− 2u
2
+ b − u, u
3
+ 2u
2
+ a + 2u, u
6
+ 3u
5
+ 3u
4
− 2u
3
− 4u
2
− u + 1i
I
u
2
= hb, u
2
+ a + 2u + 1, u
3
+ u
2
− 1i
I
u
3
= h−a
2
+ b − 3a − 1, a
3
+ 3a
2
+ 2a + 1, u − 1i
I
u
4
= hu
4
+ 2u
3
+ u
2
+ 2b − u − 1, −u
5
− 3u
4
− 7u
3
− 4u
2
+ 4a − 2u + 5, u
6
+ 2u
5
+ 4u
4
+ u
3
+ 2u
2
− 3u + 1i
* 4 irreducible components of dim
C
= 0, with total 18 representations.
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1