12n
0302
(K12n
0302
)
A knot diagram
1
Linearized knot diagam
3 6 7 9 11 2 1 5 1 4 8 9
Solving Sequence
5,8 1,9
10 4 7 3 12 11 6 2
c
8
c
9
c
4
c
7
c
3
c
12
c
11
c
5
c
2
c
1
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
30
u
29
+ ··· + 64b + 1, u
30
+ u
29
+ ··· + 64a 65, u
31
+ 4u
29
+ ··· + 2u 1i
I
u
2
= h1.68907 × 10
23
u
35
1.11374 × 10
23
u
34
+ ··· + 9.33256 × 10
23
b + 1.62659 × 10
24
,
2.83334 × 10
24
u
35
+ 1.80304 × 10
24
u
34
+ ··· + 1.58653 × 10
25
a + 2.57411 × 10
25
,
u
36
u
35
+ ··· 44u + 17i
I
u
3
= hb + a + 1, a
6
+ a
5
u + 6a
5
+ 5a
4
u + 16a
4
+ 12a
3
u + 24a
3
+ 16a
2
u + 21a
2
+ 12au + 10a + 4u + 1, u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 79 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
30
u
29
+· · ·+64b+1, u
30
+u
29
+· · ·+64a65, u
31
+4u
29
+· · ·+2u1i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
1
=
0.0156250u
30
0.0156250u
29
+ ··· 0.0156250u + 1.01563
0.0156250u
30
+ 0.0156250u
29
+ ··· + 0.0156250u 0.0156250
a
9
=
1
u
2
a
10
=
0.0156250u
30
0.0156250u
29
+ ··· 0.0156250u + 1.01563
0.0156250u
30
+ 0.0156250u
29
+ ··· + 0.0156250u 0.0156250
a
4
=
u
u
3
+ u
a
7
=
0.171875u
30
0.203125u
29
+ ··· 0.265625u + 1.23438
5
32
u
30
+
3
16
u
29
+ ··· +
1
4
u
7
32
a
3
=
2.37500u
30
0.125000u
29
+ ··· + 7.68750u 0.625000
1.45313u
30
+ 0.453125u
29
+ ··· 2.23438u + 0.0468750
a
12
=
0.0156250u
30
0.0156250u
29
+ ··· 0.0156250u + 1.01563
0.0156250u
30
+ 0.0156250u
29
+ ··· + 0.0156250u 0.0156250
a
11
=
1
0.0156250u
30
+ 0.0156250u
29
+ ··· + 0.0156250u 0.0156250
a
6
=
u
0.0156250u
30
+ 0.0156250u
29
+ ··· + 1.04688u 0.0156250
a
2
=
2.45313u
30
1.10938u
29
+ ··· + 6.73438u + 1.04688
1
32
u
30
+
43
32
u
29
+ ··· +
61
16
u
7
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
15
8
u
30
+
7
2
u
29
+ ··· +
343
16
u
181
16
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
31
+ 15u
30
+ ··· 3u 4
c
2
, c
6
u
31
3u
30
+ ··· 5u + 2
c
3
u
31
+ 3u
30
+ ··· 13u + 2
c
4
, c
5
, c
8
u
31
+ 4u
29
+ ··· + 2u + 1
c
7
u
31
15u
30
+ ··· 971u + 86
c
9
, c
12
u
31
8u
30
+ ··· 12u + 1
c
10
u
31
19u
29
+ ··· + 328u + 73
c
11
u
31
+ 29u
30
+ ··· + 2490368u + 262144
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
31
+ 3y
30
+ ··· + 129y 16
c
2
, c
6
y
31
+ 15y
30
+ ··· 3y 4
c
3
y
31
9y
30
+ ··· 27y 4
c
4
, c
5
, c
8
y
31
+ 8y
30
+ ··· 12y 1
c
7
y
31
+ 3y
30
+ ··· + 25565y 7396
c
9
, c
12
y
31
+ 44y
30
+ ··· + 4y 1
c
10
y
31
38y
30
+ ··· + 121892y 5329
c
11
y
31
7y
30
+ ··· + 188978561024y 68719476736
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.428614 + 0.787639I
a = 0.020444 1.071240I
b = 0.277691 + 1.156760I
2.11446 7.62347I 2.55486 + 10.23287I
u = 0.428614 0.787639I
a = 0.020444 + 1.071240I
b = 0.277691 1.156760I
2.11446 + 7.62347I 2.55486 10.23287I
u = 0.398489 + 0.747920I
a = 0.277025 + 1.072210I
b = 0.127552 1.190720I
3.81643 + 2.62838I 0.13136 5.27727I
u = 0.398489 0.747920I
a = 0.277025 1.072210I
b = 0.127552 + 1.190720I
3.81643 2.62838I 0.13136 + 5.27727I
u = 0.823498 + 0.113059I
a = 0.851475 0.053587I
b = 1.221930 0.380414I
4.06065 + 3.78130I 10.92047 4.50880I
u = 0.823498 0.113059I
a = 0.851475 + 0.053587I
b = 1.221930 + 0.380414I
4.06065 3.78130I 10.92047 + 4.50880I
u = 0.308639 + 0.692422I
a = 0.807667 + 1.093890I
b = 0.226940 1.192890I
3.71218 + 0.23183I 0.44077 4.37023I
u = 0.308639 0.692422I
a = 0.807667 1.093890I
b = 0.226940 + 1.192890I
3.71218 0.23183I 0.44077 + 4.37023I
u = 0.737257 + 0.999674I
a = 1.014960 + 0.279964I
b = 0.405856 0.149663I
1.01582 3.41753I 1.81646 + 1.83833I
u = 0.737257 0.999674I
a = 1.014960 0.279964I
b = 0.405856 + 0.149663I
1.01582 + 3.41753I 1.81646 1.83833I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.493312 + 0.567058I
a = 0.507385 0.402871I
b = 0.107522 + 0.874845I
0.97829 1.43223I 7.64253 + 4.49429I
u = 0.493312 0.567058I
a = 0.507385 + 0.402871I
b = 0.107522 0.874845I
0.97829 + 1.43223I 7.64253 4.49429I
u = 0.263305 + 0.688070I
a = 1.04620 1.12763I
b = 0.418303 + 1.197120I
1.88939 + 4.73630I 3.89657 0.59420I
u = 0.263305 0.688070I
a = 1.04620 + 1.12763I
b = 0.418303 1.197120I
1.88939 4.73630I 3.89657 + 0.59420I
u = 0.896581 + 0.914182I
a = 0.497658 + 0.734722I
b = 1.22042 + 0.80006I
4.16004 2.58701I 4.00000 + 2.53611I
u = 0.896581 0.914182I
a = 0.497658 0.734722I
b = 1.22042 0.80006I
4.16004 + 2.58701I 4.00000 2.53611I
u = 0.747911 + 1.060550I
a = 1.244110 0.413683I
b = 0.518247 + 0.621142I
0.50947 + 8.32474I 0.66671 7.63696I
u = 0.747911 1.060550I
a = 1.244110 + 0.413683I
b = 0.518247 0.621142I
0.50947 8.32474I 0.66671 + 7.63696I
u = 0.946068 + 0.895466I
a = 0.369074 0.860893I
b = 1.39985 1.14923I
6.97286 2.17567I 7.38278 + 1.16604I
u = 0.946068 0.895466I
a = 0.369074 + 0.860893I
b = 1.39985 + 1.14923I
6.97286 + 2.17567I 7.38278 1.16604I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.918427 + 0.979157I
a = 0.674803 0.903235I
b = 1.66201 0.48080I
8.26580 + 6.12965I 8.72219 5.26564I
u = 0.918427 0.979157I
a = 0.674803 + 0.903235I
b = 1.66201 + 0.48080I
8.26580 6.12965I 8.72219 + 5.26564I
u = 0.654707
a = 0.828573
b = 0.783801
1.18982 8.14570
u = 0.789945 + 1.134080I
a = 1.45883 0.71380I
b = 0.97512 + 1.29471I
2.55844 + 10.54750I 1.65094 6.34331I
u = 0.789945 1.134080I
a = 1.45883 + 0.71380I
b = 0.97512 1.29471I
2.55844 10.54750I 1.65094 + 6.34331I
u = 0.831569 + 1.116210I
a = 1.30990 + 0.83774I
b = 1.38338 1.03976I
7.22926 7.46449I 7.55894 + 4.20366I
u = 0.831569 1.116210I
a = 1.30990 0.83774I
b = 1.38338 + 1.03976I
7.22926 + 7.46449I 7.55894 4.20366I
u = 0.796078 + 1.157720I
a = 1.53812 + 0.78506I
b = 1.06685 1.54659I
5.0523 15.6504I 4.62054 + 9.85010I
u = 0.796078 1.157720I
a = 1.53812 0.78506I
b = 1.06685 + 1.54659I
5.0523 + 15.6504I 4.62054 9.85010I
u = 0.158909 + 0.450532I
a = 1.182970 0.267894I
b = 0.349614 + 0.360185I
0.56592 1.41483I 5.18401 + 4.52622I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.158909 0.450532I
a = 1.182970 + 0.267894I
b = 0.349614 0.360185I
0.56592 + 1.41483I 5.18401 4.52622I
8
II. I
u
2
= h1.69 × 10
23
u
35
1.11 × 10
23
u
34
+ · · · + 9.33 × 10
23
b + 1.63 ×
10
24
, 2.83 × 10
24
u
35
+ 1.80 × 10
24
u
34
+ · · · + 1.59 × 10
25
a + 2.57 ×
10
25
, u
36
u
35
+ · · · 44u + 17i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
1
=
0.178587u
35
0.113646u
34
+ ··· 2.60843u 1.62248
0.180987u
35
+ 0.119339u
34
+ ··· 0.246496u 1.74292
a
9
=
1
u
2
a
10
=
0.00240038u
35
+ 0.00569313u
34
+ ··· 2.85493u 2.36540
0.0118866u
35
0.0147001u
34
+ ··· 0.196623u 1.07676
a
4
=
u
u
3
+ u
a
7
=
0.116243u
35
0.0798703u
34
+ ··· 2.42275u 0.678453
0.208906u
35
+ 0.154096u
34
+ ··· 0.572363u 1.69509
a
3
=
0.0899876u
35
0.234769u
34
+ ··· + 6.71425u 2.77653
0.0464972u
35
0.00440409u
34
+ ··· + 2.00161u 0.344605
a
12
=
0.0509778u
35
0.0297385u
34
+ ··· 2.54053u 0.983544
1
a
11
=
0.0509778u
35
0.0297385u
34
+ ··· 2.54053u 1.98354
1
a
6
=
0.0375842u
35
0.0900247u
34
+ ··· 7.79934u + 1.72161
0.0212393u
35
0.148848u
34
+ ··· + 1.25948u 0.866623
a
2
=
0.267879u
35
0.421650u
34
+ ··· + 20.4123u 11.1581
0.0138355u
35
+ 0.221537u
34
+ ··· + 0.400166u 0.936209
(ii) Obstruction class = 1
(iii) Cusp Shapes =
94459427649077696837288
933255522779965433376737
u
35
+
1669130199746521433848712
933255522779965433376737
u
34
+ ···
25170861470598659641440976
933255522779965433376737
u +
1667795781533429661370718
933255522779965433376737
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
18
+ 9u
17
+ ··· + u + 1)
2
c
2
, c
6
(u
18
+ u
17
+ ··· + u + 1)
2
c
3
(u
18
u
17
+ ··· u + 5)
2
c
4
, c
5
, c
8
u
36
+ u
35
+ ··· + 44u + 17
c
7
(u
18
+ 5u
17
+ ··· + 13u + 3)
2
c
9
, c
12
u
36
15u
35
+ ··· 3300u + 289
c
10
u
36
+ u
35
+ ··· 22616u + 236209
c
11
(u 1)
36
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
18
+ y
17
+ ··· + 9y + 1)
2
c
2
, c
6
(y
18
+ 9y
17
+ ··· + y + 1)
2
c
3
(y
18
7y
17
+ ··· 91y + 25)
2
c
4
, c
5
, c
8
y
36
+ 15y
35
+ ··· + 3300y + 289
c
7
(y
18
3y
17
+ ··· + 5y + 9)
2
c
9
, c
12
y
36
+ 11y
35
+ ··· + 3006276y + 83521
c
10
y
36
5y
35
+ ··· 292100155924y + 55794691681
c
11
(y 1)
36
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.320634 + 0.870916I
a = 1.59556 + 0.83474I
b = 0.087095 + 0.616918I
4.20760 + 0.97328I 2.11395 4.55184I
u = 0.320634 0.870916I
a = 1.59556 0.83474I
b = 0.087095 0.616918I
4.20760 0.97328I 2.11395 + 4.55184I
u = 0.828905 + 0.682944I
a = 0.886516 + 0.217948I
b = 0.420070 + 0.303007I
1.65768 2.36433I 3.03894 + 3.34702I
u = 0.828905 0.682944I
a = 0.886516 0.217948I
b = 0.420070 0.303007I
1.65768 + 2.36433I 3.03894 3.34702I
u = 0.338195 + 1.021420I
a = 1.33297 1.04821I
b = 0.609948 0.458991I
2.68166 + 3.09151I 0.88507 2.77317I
u = 0.338195 1.021420I
a = 1.33297 + 1.04821I
b = 0.609948 + 0.458991I
2.68166 3.09151I 0.88507 + 2.77317I
u = 0.786288 + 0.800353I
a = 1.137130 0.178590I
b = 0.420070 + 0.303007I
1.65768 2.36433I 3.03894 + 3.34702I
u = 0.786288 0.800353I
a = 1.137130 + 0.178590I
b = 0.420070 0.303007I
1.65768 + 2.36433I 3.03894 3.34702I
u = 0.061644 + 1.184410I
a = 0.586032 0.513303I
b = 0.954493 + 0.372508I
0.299485 0.584791I 8.18494 0.42463I
u = 0.061644 1.184410I
a = 0.586032 + 0.513303I
b = 0.954493 0.372508I
0.299485 + 0.584791I 8.18494 + 0.42463I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.001550 + 0.646267I
a = 0.708963 + 0.596743I
b = 1.09501 + 1.09178I
4.08770 3.98828I 3.98066 + 2.30410I
u = 1.001550 0.646267I
a = 0.708963 0.596743I
b = 1.09501 1.09178I
4.08770 + 3.98828I 3.98066 2.30410I
u = 0.216325 + 1.182910I
a = 0.713880 1.120330I
b = 0.609948 + 0.458991I
2.68166 3.09151I 0.88507 + 2.77317I
u = 0.216325 1.182910I
a = 0.713880 + 1.120330I
b = 0.609948 0.458991I
2.68166 + 3.09151I 0.88507 2.77317I
u = 0.113877 + 1.199280I
a = 0.350242 + 0.891800I
b = 0.087095 0.616918I
4.20760 0.97328I 2.11395 + 4.55184I
u = 0.113877 1.199280I
a = 0.350242 0.891800I
b = 0.087095 + 0.616918I
4.20760 + 0.97328I 2.11395 4.55184I
u = 1.043630 + 0.630455I
a = 0.645528 0.695501I
b = 1.22852 1.39513I
6.71673 + 8.95499I 7.02415 5.84784I
u = 1.043630 0.630455I
a = 0.645528 + 0.695501I
b = 1.22852 + 1.39513I
6.71673 8.95499I 7.02415 + 5.84784I
u = 0.509916 + 0.585624I
a = 1.93080 0.98314I
b = 0.908336 0.995159I
1.11805 6.64525I 4.64041 + 7.71274I
u = 0.509916 0.585624I
a = 1.93080 + 0.98314I
b = 0.908336 + 0.995159I
1.11805 + 6.64525I 4.64041 7.71274I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.411107 + 0.639674I
a = 1.94005 + 0.91219I
b = 0.616271 + 0.817602I
3.38528 + 2.06052I 0.97721 4.27827I
u = 0.411107 0.639674I
a = 1.94005 0.91219I
b = 0.616271 0.817602I
3.38528 2.06052I 0.97721 + 4.27827I
u = 1.021780 + 0.715295I
a = 0.873555 0.679781I
b = 1.53845 0.79255I
8.50059 + 0.69909I 9.38255 + 0.31146I
u = 1.021780 0.715295I
a = 0.873555 + 0.679781I
b = 1.53845 + 0.79255I
8.50059 0.69909I 9.38255 0.31146I
u = 0.006529 + 1.249810I
a = 0.249742 + 0.857549I
b = 0.616271 0.817602I
3.38528 2.06052I 0.97721 + 4.27827I
u = 0.006529 1.249810I
a = 0.249742 0.857549I
b = 0.616271 + 0.817602I
3.38528 + 2.06052I 0.97721 4.27827I
u = 0.029699 + 1.287060I
a = 0.453155 0.982720I
b = 0.908336 + 0.995159I
1.11805 + 6.64525I 4.64041 7.71274I
u = 0.029699 1.287060I
a = 0.453155 + 0.982720I
b = 0.908336 0.995159I
1.11805 6.64525I 4.64041 + 7.71274I
u = 0.886065 + 0.936840I
a = 1.41586 0.38586I
b = 1.09501 + 1.09178I
4.08770 3.98828I 4.00000 + 2.30410I
u = 0.886065 0.936840I
a = 1.41586 + 0.38586I
b = 1.09501 1.09178I
4.08770 + 3.98828I 4.00000 2.30410I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.945816 + 0.902689I
a = 1.34476 + 0.52640I
b = 1.53845 0.79255I
8.50059 + 0.69909I 9.38255 + 0.31146I
u = 0.945816 0.902689I
a = 1.34476 0.52640I
b = 1.53845 + 0.79255I
8.50059 0.69909I 9.38255 0.31146I
u = 0.904248 + 0.975132I
a = 1.50571 + 0.41815I
b = 1.22852 1.39513I
6.71673 + 8.95499I 7.02415 5.84784I
u = 0.904248 0.975132I
a = 1.50571 0.41815I
b = 1.22852 + 1.39513I
6.71673 8.95499I 7.02415 + 5.84784I
u = 0.321811 + 0.404020I
a = 2.26698 1.18927I
b = 0.954493 0.372508I
0.299485 + 0.584791I 8.18494 + 0.42463I
u = 0.321811 0.404020I
a = 2.26698 + 1.18927I
b = 0.954493 + 0.372508I
0.299485 0.584791I 8.18494 0.42463I
15
III. I
u
3
= hb + a + 1, a
5
u + 5a
4
u + · · · + 10a + 1, u
2
+ 1i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
1
=
a
a 1
a
9
=
1
1
a
10
=
a + 1
a 2
a
4
=
u
0
a
7
=
a
2
+ a + 1
a
2
2a 1
a
3
=
a
4
u + 3a
3
u + 4a
2
u + 3au + 2u
a
4
u 4a
3
u 6a
2
u 4au u
a
12
=
a + 1
a 2
a
11
=
1
a 2
a
6
=
u
au u
a
2
=
a
5
u 4a
4
u 8a
3
u 9a
2
u 6au u
a
4
u 4a
3
u + ··· 12a 4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
4
16a
3
28a
2
4au 24a 4u 8
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
c
2
, c
6
, c
7
u
12
+ 3u
10
+ 5u
8
+ 4u
6
+ 2u
4
+ u
2
+ 1
c
3
u
12
u
10
+ 5u
8
+ 6u
4
3u
2
+ 1
c
4
, c
5
, c
8
(u
2
+ 1)
6
c
9
(u + 1)
12
c
10
u
12
2u
11
+ ··· 56u + 17
c
11
u
12
12u
11
+ ··· 116u + 17
c
12
(u 1)
12
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
c
2
, c
6
, c
7
(y
6
+ 3y
5
+ 5y
4
+ 4y
3
+ 2y
2
+ y + 1)
2
c
3
(y
6
y
5
+ 5y
4
+ 6y
2
3y + 1)
2
c
4
, c
5
, c
8
(y + 1)
12
c
9
, c
12
(y 1)
12
c
10
y
12
+ 6y
11
+ ··· 620y + 289
c
11
y
12
6y
11
+ ··· + 620y + 289
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.441248 1.073950I
b = 0.558752 + 1.073950I
3.28987 + 5.69302I 2.00000 5.51057I
u = 1.000000I
a = 0.704458 + 1.002190I
b = 0.295542 1.002190I
5.18047 0.92430I 5.71672 + 0.79423I
u = 1.000000I
a = 0.335469 0.428243I
b = 0.664531 + 0.428243I
1.39926 0.92430I 1.71672 + 0.79423I
u = 1.000000I
a = 1.29554 + 1.00219I
b = 0.295542 1.002190I
5.18047 + 0.92430I 5.71672 0.79423I
u = 1.000000I
a = 1.66453 0.42824I
b = 0.664531 + 0.428243I
1.39926 + 0.92430I 1.71672 0.79423I
u = 1.000000I
a = 1.55875 1.07395I
b = 0.558752 + 1.073950I
3.28987 5.69302I 2.00000 + 5.51057I
u = 1.000000I
a = 0.441248 + 1.073950I
b = 0.558752 1.073950I
3.28987 5.69302I 2.00000 + 5.51057I
u = 1.000000I
a = 0.704458 1.002190I
b = 0.295542 + 1.002190I
5.18047 + 0.92430I 5.71672 0.79423I
u = 1.000000I
a = 0.335469 + 0.428243I
b = 0.664531 0.428243I
1.39926 + 0.92430I 1.71672 0.79423I
u = 1.000000I
a = 1.29554 1.00219I
b = 0.295542 + 1.002190I
5.18047 0.92430I 5.71672 + 0.79423I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.66453 + 0.42824I
b = 0.664531 0.428243I
1.39926 0.92430I 1.71672 + 0.79423I
u = 1.000000I
a = 1.55875 + 1.07395I
b = 0.558752 1.073950I
3.28987 + 5.69302I 2.00000 5.51057I
20
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
)(u
18
+ 9u
17
+ ··· + u + 1)
2
· (u
31
+ 15u
30
+ ··· 3u 4)
c
2
, c
6
(u
12
+ 3u
10
+ ··· + u
2
+ 1)(u
18
+ u
17
+ ··· + u + 1)
2
· (u
31
3u
30
+ ··· 5u + 2)
c
3
(u
12
u
10
+ 5u
8
+ 6u
4
3u
2
+ 1)(u
18
u
17
+ ··· u + 5)
2
· (u
31
+ 3u
30
+ ··· 13u + 2)
c
4
, c
5
, c
8
((u
2
+ 1)
6
)(u
31
+ 4u
29
+ ··· + 2u + 1)(u
36
+ u
35
+ ··· + 44u + 17)
c
7
(u
12
+ 3u
10
+ ··· + u
2
+ 1)(u
18
+ 5u
17
+ ··· + 13u + 3)
2
· (u
31
15u
30
+ ··· 971u + 86)
c
9
((u + 1)
12
)(u
31
8u
30
+ ··· 12u + 1)
· (u
36
15u
35
+ ··· 3300u + 289)
c
10
(u
12
2u
11
+ ··· 56u + 17)(u
31
19u
29
+ ··· + 328u + 73)
· (u
36
+ u
35
+ ··· 22616u + 236209)
c
11
((u 1)
36
)(u
12
12u
11
+ ··· 116u + 17)
· (u
31
+ 29u
30
+ ··· + 2490368u + 262144)
c
12
((u 1)
12
)(u
31
8u
30
+ ··· 12u + 1)
· (u
36
15u
35
+ ··· 3300u + 289)
21
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
)(y
18
+ y
17
+ ··· + 9y + 1)
2
· (y
31
+ 3y
30
+ ··· + 129y 16)
c
2
, c
6
((y
6
+ 3y
5
+ 5y
4
+ 4y
3
+ 2y
2
+ y + 1)
2
)(y
18
+ 9y
17
+ ··· + y + 1)
2
· (y
31
+ 15y
30
+ ··· 3y 4)
c
3
((y
6
y
5
+ 5y
4
+ 6y
2
3y + 1)
2
)(y
18
7y
17
+ ··· 91y + 25)
2
· (y
31
9y
30
+ ··· 27y 4)
c
4
, c
5
, c
8
((y + 1)
12
)(y
31
+ 8y
30
+ ··· 12y 1)
· (y
36
+ 15y
35
+ ··· + 3300y + 289)
c
7
((y
6
+ 3y
5
+ 5y
4
+ 4y
3
+ 2y
2
+ y + 1)
2
)(y
18
3y
17
+ ··· + 5y + 9)
2
· (y
31
+ 3y
30
+ ··· + 25565y 7396)
c
9
, c
12
((y 1)
12
)(y
31
+ 44y
30
+ ··· + 4y 1)
· (y
36
+ 11y
35
+ ··· + 3006276y + 83521)
c
10
(y
12
+ 6y
11
+ ··· 620y + 289)(y
31
38y
30
+ ··· + 121892y 5329)
· (y
36
5y
35
+ ··· 292100155924y + 55794691681)
c
11
((y 1)
36
)(y
12
6y
11
+ ··· + 620y + 289)
· (y
31
7y
30
+ ··· + 188978561024y 68719476736)
22