12n
0303
(K12n
0303
)
A knot diagram
1
Linearized knot diagam
3 6 7 9 2 5 11 12 5 7 8 10
Solving Sequence
2,5
6 3
7,10
11 1 9 4 12 8
c
5
c
2
c
6
c
10
c
1
c
9
c
4
c
12
c
8
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
23
+ u
22
+ ··· + b 2u, 3u
23
6u
22
+ ··· + 2a + 7, u
26
+ 3u
25
+ ··· 9u
2
+ 1i
I
u
2
= hb, a
2
+ au u
2
a + 2u 1, u
3
u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 32 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
23
+u
22
+· · ·+ b2u, 3u
23
6u
22
+· · ·+ 2a + 7 , u
26
+3u
25
+· · ·9u
2
+1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
2
a
10
=
3
2
u
23
+ 3u
22
+ ··· 4u
7
2
u
23
u
22
+ ··· + 2u
2
+ 2u
a
11
=
u
25
+
7
2
u
24
+ ···
11
2
u 3
1
2
u
25
3
2
u
24
+ ··· +
3
2
u
1
2
a
1
=
u
3
u
5
u
3
+ u
a
9
=
5
2
u
23
+ 4u
22
+ ··· 6u
7
2
u
23
u
22
+ ··· + 2u
2
+ 2u
a
4
=
u
7
2u
5
+ 2u
3
2u
u
7
+ u
5
2u
3
+ u
a
12
=
1
2
u
23
+ u
22
+ ··· + 2u +
1
2
u
2
a
8
=
1
2
u
24
2u
22
+ ···
7
2
u + 1
1
2
u
25
3
2
u
24
+ ··· +
3
2
u
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
11
2
u
25
12u
24
+
1
2
u
23
+ 30u
22
13u
21
105u
20
42u
19
+
337
2
u
18
+ 57u
17
325u
16
196u
15
+ 356u
14
+ 198u
13
979
2
u
12
283u
11
+
789
2
u
10
+
353
2
u
9
809
2
u
8
297
2
u
7
+ 250u
6
+ 41u
5
154u
4
16u
3
+
149
2
u
2
+ 13u
33
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
26
+ 5u
25
+ ··· + 18u + 1
c
2
, c
5
u
26
+ 3u
25
+ ··· 9u
2
+ 1
c
3
u
26
3u
25
+ ··· + 6516u + 1009
c
4
, c
9
u
26
u
25
+ ··· + 96u + 64
c
7
, c
8
, c
10
c
11
u
26
+ 4u
25
+ ··· 3u + 1
c
12
u
26
+ 28u
24
+ ··· 31u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
26
+ 35y
25
+ ··· 74y + 1
c
2
, c
5
y
26
5y
25
+ ··· 18y + 1
c
3
y
26
+ 95y
25
+ ··· 36103574y + 1018081
c
4
, c
9
y
26
35y
25
+ ··· 58368y + 4096
c
7
, c
8
, c
10
c
11
y
26
28y
25
+ ··· 27y + 1
c
12
y
26
+ 56y
25
+ ··· 391y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.697878 + 0.750786I
a = 0.950274 + 0.282069I
b = 0.969430 + 0.478608I
3.30312 1.30372I 2.90180 + 1.28901I
u = 0.697878 0.750786I
a = 0.950274 0.282069I
b = 0.969430 0.478608I
3.30312 + 1.30372I 2.90180 1.28901I
u = 1.05556
a = 1.13582
b = 1.20261
6.55918 13.9020
u = 0.714104 + 0.530028I
a = 0.308272 + 1.024340I
b = 0.222426 + 0.888370I
7.39553 + 1.99902I 12.68261 2.64464I
u = 0.714104 0.530028I
a = 0.308272 1.024340I
b = 0.222426 0.888370I
7.39553 1.99902I 12.68261 + 2.64464I
u = 0.426539 + 0.776149I
a = 1.244140 0.230526I
b = 1.405990 + 0.009237I
1.37386 + 1.46827I 7.40504 0.61110I
u = 0.426539 0.776149I
a = 1.244140 + 0.230526I
b = 1.405990 0.009237I
1.37386 1.46827I 7.40504 + 0.61110I
u = 0.924653 + 0.644299I
a = 0.192140 0.877647I
b = 0.922849 + 0.070450I
2.53585 3.91698I 4.21369 + 6.80514I
u = 0.924653 0.644299I
a = 0.192140 + 0.877647I
b = 0.922849 0.070450I
2.53585 + 3.91698I 4.21369 6.80514I
u = 1.032140 + 0.523292I
a = 0.16264 + 1.48931I
b = 1.372650 + 0.239227I
3.36202 6.28703I 10.76890 + 5.79025I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.032140 0.523292I
a = 0.16264 1.48931I
b = 1.372650 0.239227I
3.36202 + 6.28703I 10.76890 5.79025I
u = 0.826543
a = 0.499620
b = 0.424946
1.35750 5.74160
u = 0.904709 + 0.855635I
a = 0.749040 + 0.396223I
b = 0.015583 1.255880I
0.45711 3.16518I 10.09379 + 2.71963I
u = 0.904709 0.855635I
a = 0.749040 0.396223I
b = 0.015583 + 1.255880I
0.45711 + 3.16518I 10.09379 2.71963I
u = 0.874451 + 0.958708I
a = 1.34597 + 0.77169I
b = 1.85003 0.54896I
6.92052 3.79217I 7.74212 + 0.87029I
u = 0.874451 0.958708I
a = 1.34597 0.77169I
b = 1.85003 + 0.54896I
6.92052 + 3.79217I 7.74212 0.87029I
u = 0.932825 + 0.952507I
a = 1.48560 0.97786I
b = 2.02844 + 0.13031I
13.70930 + 0.63054I 5.09956 + 0.08472I
u = 0.932825 0.952507I
a = 1.48560 + 0.97786I
b = 2.02844 0.13031I
13.70930 0.63054I 5.09956 0.08472I
u = 1.007520 + 0.885407I
a = 1.72924 1.22466I
b = 1.78041 0.65102I
6.48279 + 10.56660I 8.37835 5.32202I
u = 1.007520 0.885407I
a = 1.72924 + 1.22466I
b = 1.78041 + 0.65102I
6.48279 10.56660I 8.37835 + 5.32202I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.977518 + 0.926314I
a = 1.61355 + 1.11637I
b = 1.99598 + 0.29162I
13.5604 + 6.2675I 5.43427 4.61670I
u = 0.977518 0.926314I
a = 1.61355 1.11637I
b = 1.99598 0.29162I
13.5604 6.2675I 5.43427 + 4.61670I
u = 0.605940
a = 3.65946
b = 0.461168
9.68489 0.985630
u = 0.507505 + 0.285828I
a = 0.417815 0.836271I
b = 0.046187 0.679181I
0.698170 + 0.981366I 8.43360 6.86703I
u = 0.507505 0.285828I
a = 0.417815 + 0.836271I
b = 0.046187 + 0.679181I
0.698170 0.981366I 8.43360 + 6.86703I
u = 0.332169
a = 2.60819
b = 0.512315
1.32945 6.03470
7
II. I
u
2
= hb, a
2
+ au u
2
a + 2u 1, u
3
u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
2
+ u + 1
a
7
=
u
2
+ 1
u
2
a
10
=
a
0
a
11
=
au + 2a
u
2
a au a
a
1
=
u
2
1
u
2
a
9
=
a
0
a
4
=
1
0
a
12
=
u
2
a + u 2
u
2
a
8
=
au 2a + u 1
u
2
a + au + a
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
a 3u
2
a + 8u 13
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
, c
9
u
6
c
5
(u
3
u
2
+ 1)
2
c
6
(u
3
+ u
2
+ 2u + 1)
2
c
7
, c
8
(u
2
+ u 1)
3
c
10
, c
11
, c
12
(u
2
u 1)
3
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
(y
3
y
2
+ 2y 1)
2
c
4
, c
9
y
6
c
7
, c
8
, c
10
c
11
, c
12
(y
2
3y + 1)
3
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.198308 1.205210I
b = 0
5.85852 2.82812I 8.44207 + 3.24268I
u = 0.877439 + 0.744862I
a = 0.075747 + 0.460350I
b = 0
2.03717 2.82812I 5.93195 + 1.57712I
u = 0.877439 0.744862I
a = 0.198308 + 1.205210I
b = 0
5.85852 + 2.82812I 8.44207 3.24268I
u = 0.877439 0.744862I
a = 0.075747 0.460350I
b = 0
2.03717 + 2.82812I 5.93195 1.57712I
u = 0.754878
a = 1.08457
b = 0
2.10041 19.0460
u = 0.754878
a = 2.83945
b = 0
9.99610 25.2060
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
3
u
2
+ 2u 1)
2
)(u
26
+ 5u
25
+ ··· + 18u + 1)
c
2
((u
3
+ u
2
1)
2
)(u
26
+ 3u
25
+ ··· 9u
2
+ 1)
c
3
((u
3
u
2
+ 2u 1)
2
)(u
26
3u
25
+ ··· + 6516u + 1009)
c
4
, c
9
u
6
(u
26
u
25
+ ··· + 96u + 64)
c
5
((u
3
u
2
+ 1)
2
)(u
26
+ 3u
25
+ ··· 9u
2
+ 1)
c
6
((u
3
+ u
2
+ 2u + 1)
2
)(u
26
+ 5u
25
+ ··· + 18u + 1)
c
7
, c
8
((u
2
+ u 1)
3
)(u
26
+ 4u
25
+ ··· 3u + 1)
c
10
, c
11
((u
2
u 1)
3
)(u
26
+ 4u
25
+ ··· 3u + 1)
c
12
((u
2
u 1)
3
)(u
26
+ 28u
24
+ ··· 31u 1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
((y
3
+ 3y
2
+ 2y 1)
2
)(y
26
+ 35y
25
+ ··· 74y + 1)
c
2
, c
5
((y
3
y
2
+ 2y 1)
2
)(y
26
5y
25
+ ··· 18y + 1)
c
3
((y
3
+ 3y
2
+ 2y 1)
2
)(y
26
+ 95y
25
+ ··· 3.61036 × 10
7
y + 1018081)
c
4
, c
9
y
6
(y
26
35y
25
+ ··· 58368y + 4096)
c
7
, c
8
, c
10
c
11
((y
2
3y + 1)
3
)(y
26
28y
25
+ ··· 27y + 1)
c
12
((y
2
3y + 1)
3
)(y
26
+ 56y
25
+ ··· 391y + 1)
13