12n
0307
(K12n
0307
)
A knot diagram
1
Linearized knot diagam
3 6 7 9 2 5 11 12 5 1 9 8
Solving Sequence
2,5
6 3
7,11
8 1 10 9 4 12
c
5
c
2
c
6
c
7
c
1
c
10
c
9
c
4
c
12
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−28u
46
99u
45
+ ··· + 4b + 28, 8u
46
13u
45
+ ··· + 4a + 9, u
47
+ 4u
46
+ ··· + 3u 1i
I
u
2
= h−u
2
a + b + a, u
2
a + a
2
au + u
2
+ a u + 1, u
3
u
2
+ 1i
I
u
3
= h−u
2
+ b + 1, a 1, u
3
u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 56 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−28u
46
99u
45
+ · · · + 4b + 28, 8u
46
13u
45
+ · · · + 4a + 9, u
47
+
4u
46
+ · · · + 3u 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
2
a
11
=
2u
46
+
13
4
u
45
+ ···
11
2
u
9
4
7u
46
+
99
4
u
45
+ ··· +
113
4
u 7
a
8
=
1
4
u
45
+
3
4
u
44
+ ··· +
13
4
u + 2
1
4
u
46
u
45
+ ··· 2u +
1
4
a
1
=
u
3
u
5
u
3
+ u
a
10
=
23
4
u
46
+
39
2
u
45
+ ··· +
41
2
u
35
4
7
2
u
46
+ 12u
45
+ ··· + 15u
7
2
a
9
=
9
4
u
46
+
15
2
u
45
+ ··· +
11
2
u
21
4
7
2
u
46
+ 12u
45
+ ··· + 15u
7
2
a
4
=
u
7
2u
5
+ 2u
3
2u
u
7
+ u
5
2u
3
+ u
a
12
=
7
4
u
45
19
4
u
44
+ ···
31
4
u +
1
2
3u
46
+
43
4
u
45
+ ··· +
49
4
u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes =
67
4
u
46
+
101
2
u
45
+ ··· +
225
4
u
3
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
47
+ 18u
46
+ ··· + 35u + 1
c
2
, c
5
u
47
+ 4u
46
+ ··· + 3u 1
c
3
u
47
4u
46
+ ··· + 9u 1
c
4
, c
9
u
47
u
46
+ ··· 1024u 512
c
7
u
47
4u
46
+ ··· 4441u 1153
c
8
, c
11
, c
12
u
47
+ 4u
46
+ ··· 5u 1
c
10
u
47
+ 6u
46
+ ··· 31u 3
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
47
+ 26y
46
+ ··· + 787y 1
c
2
, c
5
y
47
18y
46
+ ··· + 35y 1
c
3
y
47
58y
46
+ ··· + 35y 1
c
4
, c
9
y
47
+ 49y
46
+ ··· 1703936y 262144
c
7
y
47
+ 22y
46
+ ··· 27059341y 1329409
c
8
, c
11
, c
12
y
47
+ 46y
46
+ ··· 5y 1
c
10
y
47
+ 50y
46
+ ··· + 475y 9
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.542579 + 0.845522I
a = 0.52046 1.65523I
b = 0.81563 + 1.38652I
2.89318 4.02038I 2.80109 + 3.23953I
u = 0.542579 0.845522I
a = 0.52046 + 1.65523I
b = 0.81563 1.38652I
2.89318 + 4.02038I 2.80109 3.23953I
u = 0.849325 + 0.570079I
a = 0.646245 + 0.025782I
b = 0.284968 1.290140I
2.17863 + 2.27566I 3.19435 3.09284I
u = 0.849325 0.570079I
a = 0.646245 0.025782I
b = 0.284968 + 1.290140I
2.17863 2.27566I 3.19435 + 3.09284I
u = 0.406871 + 0.865991I
a = 0.021631 1.238880I
b = 0.731358 + 1.204980I
9.98450 + 3.38049I 1.32078 2.56603I
u = 0.406871 0.865991I
a = 0.021631 + 1.238880I
b = 0.731358 1.204980I
9.98450 3.38049I 1.32078 + 2.56603I
u = 0.750352 + 0.593025I
a = 1.020220 + 0.373354I
b = 0.367043 + 1.185280I
1.34099 1.39615I 0.069604 + 1.411136I
u = 0.750352 0.593025I
a = 1.020220 0.373354I
b = 0.367043 1.185280I
1.34099 + 1.39615I 0.069604 1.411136I
u = 0.559716 + 0.892329I
a = 0.45129 + 1.94560I
b = 1.07277 2.03235I
9.05378 7.60668I 0.58639 + 3.22129I
u = 0.559716 0.892329I
a = 0.45129 1.94560I
b = 1.07277 + 2.03235I
9.05378 + 7.60668I 0.58639 3.22129I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.035120 + 0.209994I
a = 0.882211 0.713191I
b = 0.774400 0.897748I
6.95929 0.03774I 5.96271 0.75839I
u = 1.035120 0.209994I
a = 0.882211 + 0.713191I
b = 0.774400 + 0.897748I
6.95929 + 0.03774I 5.96271 + 0.75839I
u = 0.766231 + 0.547591I
a = 1.65889 0.74494I
b = 1.179640 0.111554I
1.49256 0.66743I 4.54233 0.09202I
u = 0.766231 0.547591I
a = 1.65889 + 0.74494I
b = 1.179640 + 0.111554I
1.49256 + 0.66743I 4.54233 + 0.09202I
u = 0.472512 + 0.810458I
a = 0.352292 + 1.319250I
b = 0.091933 0.956029I
3.35426 + 0.41641I 1.81917 2.68288I
u = 0.472512 0.810458I
a = 0.352292 1.319250I
b = 0.091933 + 0.956029I
3.35426 0.41641I 1.81917 + 2.68288I
u = 0.916719 + 0.584389I
a = 1.43793 + 1.12449I
b = 1.185440 + 0.406825I
0.99495 3.89558I 2.00000 + 7.22930I
u = 0.916719 0.584389I
a = 1.43793 1.12449I
b = 1.185440 0.406825I
0.99495 + 3.89558I 2.00000 7.22930I
u = 0.919108 + 0.591025I
a = 0.158662 0.317671I
b = 0.820356 + 1.073340I
1.86367 + 6.09961I 1.78165 6.44137I
u = 0.919108 0.591025I
a = 0.158662 + 0.317671I
b = 0.820356 1.073340I
1.86367 6.09961I 1.78165 + 6.44137I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.807896 + 0.791990I
a = 1.46759 0.27866I
b = 1.13467 + 1.37041I
0.27990 1.40024I 0. + 3.69287I
u = 0.807896 0.791990I
a = 1.46759 + 0.27866I
b = 1.13467 1.37041I
0.27990 + 1.40024I 0. 3.69287I
u = 1.005160 + 0.543180I
a = 1.74932 1.37109I
b = 1.071900 0.860916I
5.01656 6.25958I 2.44147 + 6.00005I
u = 1.005160 0.543180I
a = 1.74932 + 1.37109I
b = 1.071900 + 0.860916I
5.01656 + 6.25958I 2.44147 6.00005I
u = 0.880391 + 0.769089I
a = 0.562518 + 0.643186I
b = 0.135747 0.962284I
3.63076 2.90147I 4.60953 + 3.97403I
u = 0.880391 0.769089I
a = 0.562518 0.643186I
b = 0.135747 + 0.962284I
3.63076 + 2.90147I 4.60953 3.97403I
u = 1.175580 + 0.026203I
a = 0.226154 0.429398I
b = 0.18576 1.60517I
9.13930 2.39543I 3.30646 + 2.93927I
u = 1.175580 0.026203I
a = 0.226154 + 0.429398I
b = 0.18576 + 1.60517I
9.13930 + 2.39543I 3.30646 2.93927I
u = 0.797096 + 0.147471I
a = 0.470761 + 0.404647I
b = 0.305079 + 0.399977I
1.341120 + 0.348467I 5.61848 0.75974I
u = 0.797096 0.147471I
a = 0.470761 0.404647I
b = 0.305079 0.399977I
1.341120 0.348467I 5.61848 + 0.75974I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.710745 + 0.353826I
a = 1.99025 + 0.84733I
b = 0.945738 0.231377I
3.72397 + 2.21391I 0.64719 + 2.18592I
u = 0.710745 0.353826I
a = 1.99025 0.84733I
b = 0.945738 + 0.231377I
3.72397 2.21391I 0.64719 2.18592I
u = 1.210150 + 0.061384I
a = 0.556915 + 0.710918I
b = 0.53977 + 1.79323I
15.7778 5.9089I 6.14260 + 0.I
u = 1.210150 0.061384I
a = 0.556915 0.710918I
b = 0.53977 1.79323I
15.7778 + 5.9089I 6.14260 + 0.I
u = 0.941818 + 0.771815I
a = 0.18006 1.54737I
b = 1.40667 + 1.15010I
0.67750 4.47945I 0
u = 0.941818 0.771815I
a = 0.18006 + 1.54737I
b = 1.40667 1.15010I
0.67750 + 4.47945I 0
u = 1.083300 + 0.641319I
a = 1.62476 + 0.25908I
b = 0.486943 1.100850I
5.15574 + 5.00343I 0
u = 1.083300 0.641319I
a = 1.62476 0.25908I
b = 0.486943 + 1.100850I
5.15574 5.00343I 0
u = 1.082000 + 0.677407I
a = 2.00058 + 0.02197I
b = 0.94583 + 1.66881I
4.51999 + 9.69823I 0
u = 1.082000 0.677407I
a = 2.00058 0.02197I
b = 0.94583 1.66881I
4.51999 9.69823I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.122540 + 0.615470I
a = 1.60372 0.82721I
b = 0.358676 + 1.009600I
12.16410 + 2.06990I 0
u = 1.122540 0.615470I
a = 1.60372 + 0.82721I
b = 0.358676 1.009600I
12.16410 2.06990I 0
u = 1.095820 + 0.699570I
a = 2.36060 0.03371I
b = 1.00797 2.27284I
10.6948 + 13.4951I 0
u = 1.095820 0.699570I
a = 2.36060 + 0.03371I
b = 1.00797 + 2.27284I
10.6948 13.4951I 0
u = 0.207923 + 0.417127I
a = 1.69044 0.06549I
b = 0.631998 0.720191I
3.46548 + 2.21318I 2.85688 2.29805I
u = 0.207923 0.417127I
a = 1.69044 + 0.06549I
b = 0.631998 + 0.720191I
3.46548 2.21318I 2.85688 + 2.29805I
u = 0.187442
a = 2.83979
b = 0.511458
0.826035 12.4720
9
II. I
u
2
= h−u
2
a + b + a, u
2
a + a
2
au + u
2
+ a u + 1, u
3
u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
2
+ u + 1
a
7
=
u
2
+ 1
u
2
a
11
=
a
u
2
a a
a
8
=
au u
2
a + u
au + u
2
u
a
1
=
u
2
1
u
2
a
10
=
u
2
a au
0
a
9
=
u
2
a au
0
a
4
=
1
0
a
12
=
u
2
a + au u
2
+ 2u 2
u
2
a a
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
a 7au + a + 3u + 5
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
11
c
12
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
, c
9
u
6
c
5
, c
7
, c
10
(u
3
u
2
+ 1)
2
c
6
, c
8
(u
3
+ u
2
+ 2u + 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
, c
11
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
, c
7
c
10
(y
3
y
2
+ 2y 1)
2
c
4
, c
9
y
6
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.162359 0.986732I
b = 1.16236 + 0.98673I
5.65624I 2.97732 + 6.46189I
u = 0.877439 + 0.744862I
a = 0.500000 + 0.424452I
b = 0.162359 0.986732I
4.13758 2.82812I 11.75410 + 2.09676I
u = 0.877439 0.744862I
a = 0.162359 + 0.986732I
b = 1.16236 0.98673I
5.65624I 2.97732 6.46189I
u = 0.877439 0.744862I
a = 0.500000 0.424452I
b = 0.162359 + 0.986732I
4.13758 + 2.82812I 11.75410 2.09676I
u = 0.754878
a = 1.16236 + 0.98673I
b = 0.500000 0.424452I
4.13758 2.82812I 5.23142 + 6.76304I
u = 0.754878
a = 1.16236 0.98673I
b = 0.500000 + 0.424452I
4.13758 + 2.82812I 5.23142 6.76304I
13
III. I
u
3
= h−u
2
+ b + 1, a 1, u
3
u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
2
+ u + 1
a
7
=
u
2
+ 1
u
2
a
11
=
1
u
2
1
a
8
=
u
2
u + 1
u + 1
a
1
=
u
2
1
u
2
a
10
=
u
2
u
0
a
9
=
u
2
u
0
a
4
=
1
0
a
12
=
u + 1
u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
+ u + 1
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
11
c
12
u
3
u
2
+ 2u 1
c
2
u
3
+ u
2
1
c
4
, c
9
u
3
c
5
, c
7
, c
10
u
3
u
2
+ 1
c
6
, c
8
u
3
+ u
2
+ 2u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
, c
11
, c
12
y
3
+ 3y
2
+ 2y 1
c
2
, c
5
, c
7
c
10
y
3
y
2
+ 2y 1
c
4
, c
9
y
3
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 1.00000
b = 0.78492 + 1.30714I
0 1.66236 0.56228I
u = 0.877439 0.744862I
a = 1.00000
b = 0.78492 1.30714I
0 1.66236 + 0.56228I
u = 0.754878
a = 1.00000
b = 0.430160
0 0.324720
17
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
3
u
2
+ 2u 1)
3
)(u
47
+ 18u
46
+ ··· + 35u + 1)
c
2
((u
3
+ u
2
1)
3
)(u
47
+ 4u
46
+ ··· + 3u 1)
c
3
((u
3
u
2
+ 2u 1)
3
)(u
47
4u
46
+ ··· + 9u 1)
c
4
, c
9
u
9
(u
47
u
46
+ ··· 1024u 512)
c
5
((u
3
u
2
+ 1)
3
)(u
47
+ 4u
46
+ ··· + 3u 1)
c
6
((u
3
+ u
2
+ 2u + 1)
3
)(u
47
+ 18u
46
+ ··· + 35u + 1)
c
7
((u
3
u
2
+ 1)
3
)(u
47
4u
46
+ ··· 4441u 1153)
c
8
((u
3
+ u
2
+ 2u + 1)
3
)(u
47
+ 4u
46
+ ··· 5u 1)
c
10
((u
3
u
2
+ 1)
3
)(u
47
+ 6u
46
+ ··· 31u 3)
c
11
, c
12
((u
3
u
2
+ 2u 1)
3
)(u
47
+ 4u
46
+ ··· 5u 1)
18
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
((y
3
+ 3y
2
+ 2y 1)
3
)(y
47
+ 26y
46
+ ··· + 787y 1)
c
2
, c
5
((y
3
y
2
+ 2y 1)
3
)(y
47
18y
46
+ ··· + 35y 1)
c
3
((y
3
+ 3y
2
+ 2y 1)
3
)(y
47
58y
46
+ ··· + 35y 1)
c
4
, c
9
y
9
(y
47
+ 49y
46
+ ··· 1703936y 262144)
c
7
((y
3
y
2
+ 2y 1)
3
)(y
47
+ 22y
46
+ ··· 2.70593 × 10
7
y 1329409)
c
8
, c
11
, c
12
((y
3
+ 3y
2
+ 2y 1)
3
)(y
47
+ 46y
46
+ ··· 5y 1)
c
10
((y
3
y
2
+ 2y 1)
3
)(y
47
+ 50y
46
+ ··· + 475y 9)
19