10
155
(K10n
39
)
A knot diagram
1
Linearized knot diagam
6 7 8 10 9 2 10 5 3 5
Solving Sequence
7,10 5,8
4 3 2 6 1 9
c
7
c
4
c
3
c
2
c
6
c
1
c
9
c
5
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h2u
3
+ 3u
2
+ b + 1, u
3
+ u
2
+ a − u, u
4
+ 3u
3
+ 2u
2
+ 1i
I
u
2
= h−3u
3
+ u
2
+ 2b + u − 8, −2u
3
+ u
2
+ 2a + u − 5, u
4
+ u
3
− u
2
+ 2u + 4i
I
u
3
= hu
2
+ b − 1, u
3
− u
2
+ a − u + 2, u
4
− u
3
− 2u
2
+ 2u + 1i
I
u
4
= h−au + b − 1, a
2
+ au − a + u, u
2
− u − 1i
I
u
5
= h−au + b − u + 2, a
2
− 2au + 3a − 2u + 4, u
2
− u − 1i
* 5 irreducible components of dim
C
= 0, with total 20 representations.
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1