12n
0316
(K12n
0316
)
A knot diagram
1
Linearized knot diagam
3 6 12 7 2 10 3 12 1 5 7 9
Solving Sequence
3,6
2
1,9
10 7 5 4 12 8 11
c
2
c
1
c
9
c
6
c
5
c
4
c
12
c
8
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h1.49187 × 10
37
u
44
1.01328 × 10
37
u
43
+ ··· + 2.01007 × 10
37
b 7.03971 × 10
37
,
1.39776 × 10
38
u
44
+ 1.68461 × 10
38
u
43
+ ··· + 1.40705 × 10
38
a + 1.95501 × 10
39
,
u
45
2u
44
+ ··· 63u + 7i
I
u
2
= h−3u
12
7u
11
+ 2u
10
+ 24u
9
+ 6u
8
43u
7
27u
6
+ 49u
5
+ 37u
4
29u
3
27u
2
+ b + 10u + 7,
5u
12
+ 13u
11
2u
10
44u
9
19u
8
+ 78u
7
+ 60u
6
84u
5
82u
4
+ 47u
3
+ 53u
2
+ a 13u 13,
u
13
+ 3u
12
+ u
11
8u
10
7u
9
+ 12u
8
+ 17u
7
9u
6
20u
5
+ u
4
+ 12u
3
+ 2u
2
3u 1i
* 2 irreducible components of dim
C
= 0, with total 58 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.49 × 10
37
u
44
1.01 × 10
37
u
43
+ · · · + 2.01 × 10
37
b 7.04 ×
10
37
, 1.40 × 10
38
u
44
+ 1.68 × 10
38
u
43
+ · · · + 1.41 × 10
38
a + 1.96 ×
10
39
, u
45
2u
44
+ · · · 63u + 7i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
9
=
0.993395u
44
1.19726u
43
+ ··· + 89.5674u 13.8944
0.742197u
44
+ 0.504102u
43
+ ··· 24.9174u + 3.50222
a
10
=
0.168633u
44
0.289227u
43
+ ··· + 40.1071u 8.51481
0.625412u
44
+ 0.0300369u
43
+ ··· + 0.0542180u 0.00472178
a
7
=
2.57523u
44
+ 2.47327u
43
+ ··· 150.787u + 17.0513
0.238127u
44
0.117959u
43
+ ··· + 25.4258u 2.94147
a
5
=
u
u
3
+ u
a
4
=
0.0434605u
44
0.501873u
43
+ ··· + 32.2099u 4.00706
1.00696u
44
+ 1.07716u
43
+ ··· 66.0581u + 8.54528
a
12
=
1.44259u
44
+ 2.27648u
43
+ ··· 114.430u + 18.0623
0.842298u
44
0.861398u
43
+ ··· + 32.9618u 4.57062
a
8
=
2.81336u
44
+ 2.35531u
43
+ ··· 125.361u + 14.1099
0.238127u
44
0.117959u
43
+ ··· + 25.4258u 2.94147
a
11
=
0.991831u
44
+ 1.08676u
43
+ ··· 88.6012u + 14.4109
0.546953u
44
0.100468u
43
+ ··· 0.832675u 0.0412010
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.33381u
44
+ 0.732754u
43
+ ··· 88.2937u 0.929056
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
45
+ 18u
44
+ ··· + 3381u + 49
c
2
, c
5
u
45
+ 2u
44
+ ··· 63u 7
c
3
, c
10
u
45
u
44
+ ··· 20u 1
c
4
u
45
+ 7u
44
+ ··· + 15464u + 821
c
6
u
45
+ 4u
44
+ ··· 22u 4
c
7
u
45
3u
44
+ ··· + 22696u + 3551
c
8
, c
9
, c
12
u
45
+ u
44
+ ··· + 64u + 19
c
11
u
45
+ u
44
+ ··· 63u + 9
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
45
+ 42y
44
+ ··· + 6542725y 2401
c
2
, c
5
y
45
18y
44
+ ··· + 3381y 49
c
3
, c
10
y
45
+ 57y
44
+ ··· + 198y 1
c
4
y
45
63y
44
+ ··· + 21028436y 674041
c
6
y
45
4y
44
+ ··· 68y 16
c
7
y
45
53y
44
+ ··· + 550810170y 12609601
c
8
, c
9
, c
12
y
45
35y
44
+ ··· 84y 361
c
11
y
45
+ 75y
44
+ ··· + 405y 81
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.352517 + 0.930511I
a = 2.09255 0.56873I
b = 1.53917 0.68803I
0.92371 3.61571I 7.30973 + 5.35358I
u = 0.352517 0.930511I
a = 2.09255 + 0.56873I
b = 1.53917 + 0.68803I
0.92371 + 3.61571I 7.30973 5.35358I
u = 0.622969 + 0.745341I
a = 0.498948 0.274339I
b = 0.0307757 + 0.1234220I
3.19833 + 0.47295I 2.90845 1.14935I
u = 0.622969 0.745341I
a = 0.498948 + 0.274339I
b = 0.0307757 0.1234220I
3.19833 0.47295I 2.90845 + 1.14935I
u = 0.852606 + 0.644697I
a = 1.60431 + 2.03212I
b = 0.66092 + 1.63965I
7.67151 0.54614I 7.14162 + 2.19289I
u = 0.852606 0.644697I
a = 1.60431 2.03212I
b = 0.66092 1.63965I
7.67151 + 0.54614I 7.14162 2.19289I
u = 0.870374 + 0.636220I
a = 1.51114 + 2.96200I
b = 0.84979 + 1.64164I
7.61467 4.45079I 7.29611 + 4.22653I
u = 0.870374 0.636220I
a = 1.51114 2.96200I
b = 0.84979 1.64164I
7.61467 + 4.45079I 7.29611 4.22653I
u = 0.706985 + 0.572515I
a = 1.61320 + 1.43432I
b = 0.612546 + 1.273340I
0.603650 + 1.183020I 7.09381 2.18131I
u = 0.706985 0.572515I
a = 1.61320 1.43432I
b = 0.612546 1.273340I
0.603650 1.183020I 7.09381 + 2.18131I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.017280 + 0.456940I
a = 0.20833 1.43339I
b = 1.77851 + 0.14760I
2.41679 3.11933I 8.64263 + 5.00261I
u = 1.017280 0.456940I
a = 0.20833 + 1.43339I
b = 1.77851 0.14760I
2.41679 + 3.11933I 8.64263 5.00261I
u = 0.837872 + 0.180212I
a = 0.719453 + 0.504755I
b = 0.475414 + 1.151620I
5.23022 + 2.95335I 10.41493 5.15699I
u = 0.837872 0.180212I
a = 0.719453 0.504755I
b = 0.475414 1.151620I
5.23022 2.95335I 10.41493 + 5.15699I
u = 0.829207 + 0.087175I
a = 2.10128 0.71672I
b = 0.375197 + 0.692927I
6.31151 0.37732I 13.18619 0.42975I
u = 0.829207 0.087175I
a = 2.10128 + 0.71672I
b = 0.375197 0.692927I
6.31151 + 0.37732I 13.18619 + 0.42975I
u = 0.780783 + 0.287291I
a = 0.16773 2.15348I
b = 1.01268 + 1.14500I
5.58706 0.92954I 9.44375 1.95517I
u = 0.780783 0.287291I
a = 0.16773 + 2.15348I
b = 1.01268 1.14500I
5.58706 + 0.92954I 9.44375 + 1.95517I
u = 0.741986 + 0.904888I
a = 1.232980 0.115587I
b = 0.350843 0.128409I
12.46620 + 1.15235I 3.81779 + 0.34527I
u = 0.741986 0.904888I
a = 1.232980 + 0.115587I
b = 0.350843 + 0.128409I
12.46620 1.15235I 3.81779 0.34527I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.822383
a = 2.63142
b = 0.371288
10.1445 9.33710
u = 0.702661 + 0.398793I
a = 0.853897 + 0.310274I
b = 0.210564 + 0.967639I
1.09811 1.39547I 6.56054 + 4.96588I
u = 0.702661 0.398793I
a = 0.853897 0.310274I
b = 0.210564 0.967639I
1.09811 + 1.39547I 6.56054 4.96588I
u = 1.021490 + 0.633982I
a = 0.047816 0.193328I
b = 0.358831 0.204765I
1.97257 + 4.80081I 5.11482 5.89967I
u = 1.021490 0.633982I
a = 0.047816 + 0.193328I
b = 0.358831 + 0.204765I
1.97257 4.80081I 5.11482 + 5.89967I
u = 0.760787 + 0.239478I
a = 0.429130 0.024508I
b = 0.810532 0.368894I
1.101730 0.180700I 6.28342 1.85189I
u = 0.760787 0.239478I
a = 0.429130 + 0.024508I
b = 0.810532 + 0.368894I
1.101730 + 0.180700I 6.28342 + 1.85189I
u = 1.067050 + 0.679768I
a = 0.77890 + 2.44088I
b = 0.89344 + 1.68496I
1.81546 + 3.64143I 8.00000 2.52158I
u = 1.067050 0.679768I
a = 0.77890 2.44088I
b = 0.89344 1.68496I
1.81546 3.64143I 8.00000 + 2.52158I
u = 1.018190 + 0.768985I
a = 0.662287 0.442499I
b = 0.108103 0.271060I
11.57780 7.32875I 8.00000 + 4.62290I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.018190 0.768985I
a = 0.662287 + 0.442499I
b = 0.108103 + 0.271060I
11.57780 + 7.32875I 8.00000 4.62290I
u = 0.583636 + 1.148450I
a = 2.23765 1.83947I
b = 1.60697 1.61313I
8.75418 + 6.80607I 8.00000 4.07465I
u = 0.583636 1.148450I
a = 2.23765 + 1.83947I
b = 1.60697 + 1.61313I
8.75418 6.80607I 8.00000 + 4.07465I
u = 1.161870 + 0.639019I
a = 0.16411 2.14514I
b = 1.88266 1.13204I
1.49977 + 9.31425I 0
u = 1.161870 0.639019I
a = 0.16411 + 2.14514I
b = 1.88266 + 1.13204I
1.49977 9.31425I 0
u = 1.041350 + 0.853737I
a = 0.50445 + 1.98666I
b = 0.433982 + 1.234590I
4.65783 3.47814I 0
u = 1.041350 0.853737I
a = 0.50445 1.98666I
b = 0.433982 1.234590I
4.65783 + 3.47814I 0
u = 1.38604
a = 0.478642
b = 2.27111
5.50304 17.6960
u = 1.17910 + 0.78373I
a = 0.21212 2.72362I
b = 1.47078 1.85341I
6.8143 13.6617I 0
u = 1.17910 0.78373I
a = 0.21212 + 2.72362I
b = 1.47078 + 1.85341I
6.8143 + 13.6617I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.28910 + 0.63728I
a = 0.22407 + 2.43968I
b = 1.41146 + 2.05143I
1.85160 + 3.71712I 0
u = 1.28910 0.63728I
a = 0.22407 2.43968I
b = 1.41146 2.05143I
1.85160 3.71712I 0
u = 1.10756 + 0.93089I
a = 0.042729 + 1.301160I
b = 0.474464 + 0.759384I
0.57168 + 3.78059I 0
u = 1.10756 0.93089I
a = 0.042729 1.301160I
b = 0.474464 0.759384I
0.57168 3.78059I 0
u = 0.138369
a = 2.03994
b = 0.689748
0.867384 10.9880
9
II. I
u
2
=
h−3u
12
7u
11
+· · ·+b+7, 5u
12
+13u
11
+· · ·+a13, u
13
+3u
12
+· · ·3u1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
9
=
5u
12
13u
11
+ ··· + 13u + 13
3u
12
+ 7u
11
+ ··· 10u 7
a
10
=
6u
12
15u
11
+ ··· + 16u + 14
5u
12
+ 12u
11
+ ··· 13u 9
a
7
=
4u
12
9u
11
+ ··· + 8u + 3
u
12
3u
11
+ ··· u + 3
a
5
=
u
u
3
+ u
a
4
=
10u
12
+ 23u
11
+ ··· 25u 13
u
12
+ 3u
11
+ ··· + 2u 4
a
12
=
3u
12
+ 6u
11
+ ··· 8u 8
6u
12
15u
11
+ ··· + 13u + 11
a
8
=
5u
12
12u
11
+ ··· + 7u + 6
u
12
3u
11
+ ··· u + 3
a
11
=
9u
12
23u
11
+ ··· + 23u + 20
2u
12
+ 5u
11
+ ··· 6u 4
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
12
+ u
11
19u
10
32u
9
+ 28u
8
+ 70u
7
22u
6
115u
5
12u
4
+ 84u
3
+ 28u
2
36u 23
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
7u
12
+ ··· + 13u 1
c
2
u
13
+ 3u
12
+ ··· 3u 1
c
3
u
13
+ 8u
11
+ 24u
9
+ u
8
+ 33u
7
+ 4u
6
+ 20u
5
+ 5u
4
+ 5u
3
+ u
2
+ 2u 1
c
4
u
13
+ 4u
11
+ ··· + 6u 1
c
5
u
13
3u
12
+ ··· 3u + 1
c
6
u
13
+ 3u
12
5u
10
+ u
8
5u
7
+ 3u
6
+ 8u
5
u
4
6u
3
u
2
+ 2u + 1
c
7
u
13
+ 3u
11
+ ··· + 6u 1
c
8
, c
9
u
13
8u
11
+ ··· + 2u + 1
c
10
u
13
+ 8u
11
+ 24u
9
u
8
+ 33u
7
4u
6
+ 20u
5
5u
4
+ 5u
3
u
2
+ 2u + 1
c
11
u
13
2u
12
+ ··· 13u 1
c
12
u
13
8u
11
+ ··· + 2u 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
+ 21y
12
+ ··· + 21y 1
c
2
, c
5
y
13
7y
12
+ ··· + 13y 1
c
3
, c
10
y
13
+ 16y
12
+ ··· + 6y 1
c
4
y
13
+ 8y
12
+ ··· + 4y 1
c
6
y
13
9y
12
+ ··· + 6y 1
c
7
y
13
+ 6y
12
+ ··· + 22y 1
c
8
, c
9
, c
12
y
13
16y
12
+ ··· + 8y 1
c
11
y
13
14y
12
+ ··· + 29y 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.881035 + 0.428633I
a = 1.93807 2.18231I
b = 0.402497 1.355330I
5.55501 + 1.76839I 9.42733 3.99027I
u = 0.881035 0.428633I
a = 1.93807 + 2.18231I
b = 0.402497 + 1.355330I
5.55501 1.76839I 9.42733 + 3.99027I
u = 0.910742
a = 2.11436
b = 0.698976
10.3385 32.2600
u = 0.988275 + 0.624685I
a = 0.18264 + 1.54866I
b = 0.822715 + 0.363964I
4.28208 2.74184I 11.58472 + 0.68743I
u = 0.988275 0.624685I
a = 0.18264 1.54866I
b = 0.822715 0.363964I
4.28208 + 2.74184I 11.58472 0.68743I
u = 0.786272 + 0.257302I
a = 1.165010 + 0.236660I
b = 0.544518 + 1.013380I
1.90498 0.74935I 15.2105 + 0.6429I
u = 0.786272 0.257302I
a = 1.165010 0.236660I
b = 0.544518 1.013380I
1.90498 + 0.74935I 15.2105 0.6429I
u = 1.010700 + 0.772169I
a = 0.445697 + 0.983245I
b = 0.008357 + 0.919135I
1.40993 + 3.16875I 4.51782 0.85705I
u = 1.010700 0.772169I
a = 0.445697 0.983245I
b = 0.008357 0.919135I
1.40993 3.16875I 4.51782 + 0.85705I
u = 0.501636 + 0.101564I
a = 0.96670 + 1.91810I
b = 0.581751 1.286380I
6.06288 + 2.09354I 6.13746 2.14572I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.501636 0.101564I
a = 0.96670 1.91810I
b = 0.581751 + 1.286380I
6.06288 2.09354I 6.13746 + 2.14572I
u = 1.33655 + 1.04817I
a = 0.31613 + 3.50034I
b = 0.92132 + 3.01182I
2.07604 + 4.55409I 12.9921 8.8615I
u = 1.33655 1.04817I
a = 0.31613 3.50034I
b = 0.92132 3.01182I
2.07604 4.55409I 12.9921 + 8.8615I
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
13
7u
12
+ ··· + 13u 1)(u
45
+ 18u
44
+ ··· + 3381u + 49)
c
2
(u
13
+ 3u
12
+ ··· 3u 1)(u
45
+ 2u
44
+ ··· 63u 7)
c
3
(u
13
+ 8u
11
+ 24u
9
+ u
8
+ 33u
7
+ 4u
6
+ 20u
5
+ 5u
4
+ 5u
3
+ u
2
+ 2u 1)
· (u
45
u
44
+ ··· 20u 1)
c
4
(u
13
+ 4u
11
+ ··· + 6u 1)(u
45
+ 7u
44
+ ··· + 15464u + 821)
c
5
(u
13
3u
12
+ ··· 3u + 1)(u
45
+ 2u
44
+ ··· 63u 7)
c
6
(u
13
+ 3u
12
5u
10
+ u
8
5u
7
+ 3u
6
+ 8u
5
u
4
6u
3
u
2
+ 2u + 1)
· (u
45
+ 4u
44
+ ··· 22u 4)
c
7
(u
13
+ 3u
11
+ ··· + 6u 1)(u
45
3u
44
+ ··· + 22696u + 3551)
c
8
, c
9
(u
13
8u
11
+ ··· + 2u + 1)(u
45
+ u
44
+ ··· + 64u + 19)
c
10
(u
13
+ 8u
11
+ 24u
9
u
8
+ 33u
7
4u
6
+ 20u
5
5u
4
+ 5u
3
u
2
+ 2u + 1)
· (u
45
u
44
+ ··· 20u 1)
c
11
(u
13
2u
12
+ ··· 13u 1)(u
45
+ u
44
+ ··· 63u + 9)
c
12
(u
13
8u
11
+ ··· + 2u 1)(u
45
+ u
44
+ ··· + 64u + 19)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
13
+ 21y
12
+ ··· + 21y 1)(y
45
+ 42y
44
+ ··· + 6542725y 2401)
c
2
, c
5
(y
13
7y
12
+ ··· + 13y 1)(y
45
18y
44
+ ··· + 3381y 49)
c
3
, c
10
(y
13
+ 16y
12
+ ··· + 6y 1)(y
45
+ 57y
44
+ ··· + 198y 1)
c
4
(y
13
+ 8y
12
+ ··· + 4y 1)(y
45
63y
44
+ ··· + 2.10284 × 10
7
y 674041)
c
6
(y
13
9y
12
+ ··· + 6y 1)(y
45
4y
44
+ ··· 68y 16)
c
7
(y
13
+ 6y
12
+ ··· + 22y 1)
· (y
45
53y
44
+ ··· + 550810170y 12609601)
c
8
, c
9
, c
12
(y
13
16y
12
+ ··· + 8y 1)(y
45
35y
44
+ ··· 84y 361)
c
11
(y
13
14y
12
+ ··· + 29y 1)(y
45
+ 75y
44
+ ··· + 405y 81)
16