12n
0317
(K12n
0317
)
A knot diagram
1
Linearized knot diagam
3 6 11 7 2 10 11 3 12 5 9 10
Solving Sequence
6,10 3,7
2 1 5 11 4 12 9 8
c
6
c
2
c
1
c
5
c
10
c
4
c
12
c
9
c
8
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1.91786 × 10
186
u
49
4.41920 × 10
186
u
48
+ ··· + 3.02291 × 10
188
b 8.34981 × 10
189
,
8.33281 × 10
189
u
49
+ 2.07014 × 10
190
u
48
+ ··· + 7.45751 × 10
191
a + 3.95262 × 10
193
,
u
50
3u
49
+ ··· 20763u + 2467i
I
u
2
= h−215u
7
+ 940u
6
132u
5
2470u
4
1050u
3
1010u
2
+ 714b 1325u + 456,
33u
7
457u
6
+ 1280u
5
+ 678u
4
3752u
3
2070u
2
+ 714a 1363u 3697,
u
8
4u
7
u
6
+ 12u
5
+ 8u
4
+ 6u
3
+ 11u
2
+ 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 58 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.92 × 10
186
u
49
4.42 × 10
186
u
48
+ · · · + 3.02 × 10
188
b 8.35 ×
10
189
, 8.33 × 10
189
u
49
+ 2.07 × 10
190
u
48
+ · · · + 7.46 × 10
191
a + 3.95 ×
10
193
, u
50
3u
49
+ · · · 20763u + 2467i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
3
=
0.0111737u
49
0.0277592u
48
+ ··· + 350.989u 53.0019
0.00634441u
49
+ 0.0146190u
48
+ ··· 179.609u + 27.6218
a
7
=
1
u
2
a
2
=
0.00482931u
49
0.0131401u
48
+ ··· + 171.380u 25.3800
0.00634441u
49
+ 0.0146190u
48
+ ··· 179.609u + 27.6218
a
1
=
0.00125206u
49
+ 0.00578813u
48
+ ··· 123.642u + 25.1827
0.00103824u
49
+ 0.00521397u
48
+ ··· 175.306u + 29.1803
a
5
=
0.00963656u
49
0.0235349u
48
+ ··· + 264.866u 35.0739
0.00325201u
49
0.00880623u
48
+ ··· + 84.8902u 6.25925
a
11
=
0.0121639u
49
+ 0.0321646u
48
+ ··· 424.122u + 61.3195
0.000528690u
49
+ 0.00275946u
48
+ ··· 54.2826u + 5.53435
a
4
=
0.00923043u
49
0.0215045u
48
+ ··· + 267.799u 42.0742
0.00540308u
49
0.0125904u
48
+ ··· + 102.752u 8.26248
a
12
=
0.00125206u
49
+ 0.00578813u
48
+ ··· 123.642u + 25.1827
0.00199645u
49
0.000875897u
48
+ ··· 130.028u + 24.1675
a
9
=
0.00315773u
49
0.00845015u
48
+ ··· + 155.251u 29.5459
0.00922550u
49
0.0248174u
48
+ ··· + 380.914u 56.7451
a
8
=
0.00526362u
49
0.00912528u
48
+ ··· + 65.8379u 6.54803
0.00917621u
49
0.0232077u
48
+ ··· + 309.861u 48.3200
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0301306u
49
0.0796043u
48
+ ··· + 1263.65u 235.993
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
50
+ 27u
49
+ ··· + 279u + 81
c
2
, c
5
u
50
+ 3u
49
+ ··· + 27u + 9
c
3
u
50
9u
49
+ ··· + 6491u + 1543
c
4
, c
8
u
50
+ 3u
49
+ ··· 72u + 36
c
6
u
50
+ 3u
49
+ ··· + 20763u + 2467
c
7
u
50
3u
49
+ ··· 1360u + 64
c
9
, c
11
, c
12
u
50
+ 5u
49
+ ··· + 11u + 1
c
10
u
50
u
49
+ ··· + 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
50
3y
49
+ ··· 40743y + 6561
c
2
, c
5
y
50
27y
49
+ ··· 279y + 81
c
3
y
50
137y
49
+ ··· + 71302107y + 2380849
c
4
, c
8
y
50
+ 53y
49
+ ··· + 2232y + 1296
c
6
y
50
+ 43y
49
+ ··· 163462273y + 6086089
c
7
y
50
+ 143y
49
+ ··· + 1959168y + 4096
c
9
, c
11
, c
12
y
50
39y
49
+ ··· 35y + 1
c
10
y
50
+ 9y
49
+ ··· 35y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.663546 + 0.807023I
a = 0.149925 1.093180I
b = 0.227624 + 0.962311I
3.78569 + 3.81617I 5.99930 6.58404I
u = 0.663546 0.807023I
a = 0.149925 + 1.093180I
b = 0.227624 0.962311I
3.78569 3.81617I 5.99930 + 6.58404I
u = 0.989845 + 0.334652I
a = 0.852002 0.574478I
b = 0.075144 + 0.777118I
2.75103 + 1.66476I 0
u = 0.989845 0.334652I
a = 0.852002 + 0.574478I
b = 0.075144 0.777118I
2.75103 1.66476I 0
u = 1.038610 + 0.115738I
a = 0.07663 + 1.46376I
b = 1.283560 0.355028I
11.43970 + 0.61215I 5.56930 0.95685I
u = 1.038610 0.115738I
a = 0.07663 1.46376I
b = 1.283560 + 0.355028I
11.43970 0.61215I 5.56930 + 0.95685I
u = 0.976418 + 0.409184I
a = 0.117550 1.213630I
b = 0.889554 0.262388I
6.22845 1.17042I 3.22256 + 0.I
u = 0.976418 0.409184I
a = 0.117550 + 1.213630I
b = 0.889554 + 0.262388I
6.22845 + 1.17042I 3.22256 + 0.I
u = 0.856388 + 0.349802I
a = 0.217606 1.026260I
b = 0.931404 + 0.588464I
1.84212 + 2.10652I 6.74335 2.91333I
u = 0.856388 0.349802I
a = 0.217606 + 1.026260I
b = 0.931404 0.588464I
1.84212 2.10652I 6.74335 + 2.91333I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.666952 + 0.913096I
a = 0.008649 0.157261I
b = 0.697921 + 0.367007I
1.14279 1.51204I 0
u = 0.666952 0.913096I
a = 0.008649 + 0.157261I
b = 0.697921 0.367007I
1.14279 + 1.51204I 0
u = 0.553985 + 0.646141I
a = 0.195853 + 0.760473I
b = 0.095352 0.510935I
0.078263 1.314770I 0.82809 + 5.18119I
u = 0.553985 0.646141I
a = 0.195853 0.760473I
b = 0.095352 + 0.510935I
0.078263 + 1.314770I 0.82809 5.18119I
u = 0.772929 + 0.314148I
a = 0.24097 2.31460I
b = 1.197270 + 0.484749I
6.02259 6.28550I 2.35130 + 4.21184I
u = 0.772929 0.314148I
a = 0.24097 + 2.31460I
b = 1.197270 0.484749I
6.02259 + 6.28550I 2.35130 4.21184I
u = 1.232170 + 0.182436I
a = 0.142577 + 0.722468I
b = 1.327810 0.185520I
8.47541 5.36250I 0
u = 1.232170 0.182436I
a = 0.142577 0.722468I
b = 1.327810 + 0.185520I
8.47541 + 5.36250I 0
u = 0.665058 + 0.099931I
a = 0.450338 0.389982I
b = 1.190510 + 0.112073I
1.93432 + 0.03774I 6.75026 + 1.46726I
u = 0.665058 0.099931I
a = 0.450338 + 0.389982I
b = 1.190510 0.112073I
1.93432 0.03774I 6.75026 1.46726I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.219730 + 0.587243I
a = 0.224495 + 0.844921I
b = 0.158932 0.906350I
6.85044 + 3.69371I 0
u = 1.219730 0.587243I
a = 0.224495 0.844921I
b = 0.158932 + 0.906350I
6.85044 3.69371I 0
u = 0.572239 + 0.270156I
a = 0.04237 + 1.45670I
b = 1.203320 0.645182I
1.68209 2.49103I 8.75436 + 6.26567I
u = 0.572239 0.270156I
a = 0.04237 1.45670I
b = 1.203320 + 0.645182I
1.68209 + 2.49103I 8.75436 6.26567I
u = 0.504003 + 0.379964I
a = 1.17363 + 1.99927I
b = 0.391480 0.395210I
2.40372 + 0.20646I 4.09834 + 1.60523I
u = 0.504003 0.379964I
a = 1.17363 1.99927I
b = 0.391480 + 0.395210I
2.40372 0.20646I 4.09834 1.60523I
u = 0.988631 + 0.981714I
a = 0.270126 + 0.926267I
b = 0.867195 0.191758I
1.69134 0.97922I 0
u = 0.988631 0.981714I
a = 0.270126 0.926267I
b = 0.867195 + 0.191758I
1.69134 + 0.97922I 0
u = 0.74624 + 1.31133I
a = 0.534856 1.257750I
b = 1.029620 + 0.449989I
0.61177 + 3.94770I 0
u = 0.74624 1.31133I
a = 0.534856 + 1.257750I
b = 1.029620 0.449989I
0.61177 3.94770I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.08135 + 1.05259I
a = 0.017301 + 1.142600I
b = 1.215370 0.580128I
0.77226 + 9.34517I 0
u = 1.08135 1.05259I
a = 0.017301 1.142600I
b = 1.215370 + 0.580128I
0.77226 9.34517I 0
u = 0.345794 + 0.327250I
a = 0.38006 1.82618I
b = 0.824382 0.600279I
8.49427 + 2.35863I 9.67846 4.20278I
u = 0.345794 0.327250I
a = 0.38006 + 1.82618I
b = 0.824382 + 0.600279I
8.49427 2.35863I 9.67846 + 4.20278I
u = 1.29112 + 0.85257I
a = 0.129364 0.986571I
b = 0.333303 + 0.969379I
2.65959 9.10689I 0
u = 1.29112 0.85257I
a = 0.129364 + 0.986571I
b = 0.333303 0.969379I
2.65959 + 9.10689I 0
u = 1.27077 + 0.89539I
a = 0.166830 0.847725I
b = 1.141690 + 0.428927I
2.80920 5.12014I 0
u = 1.27077 0.89539I
a = 0.166830 + 0.847725I
b = 1.141690 0.428927I
2.80920 + 5.12014I 0
u = 0.353111 + 0.190645I
a = 1.170400 + 0.676061I
b = 0.715685 0.985730I
0.02992 4.02059I 0.43876 + 11.60977I
u = 0.353111 0.190645I
a = 1.170400 0.676061I
b = 0.715685 + 0.985730I
0.02992 + 4.02059I 0.43876 11.60977I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.68410 + 0.25011I
a = 0.209855 + 0.322284I
b = 1.203160 0.421900I
6.47293 2.51617I 0
u = 1.68410 0.25011I
a = 0.209855 0.322284I
b = 1.203160 + 0.421900I
6.47293 + 2.51617I 0
u = 1.75503 + 0.68133I
a = 0.093305 0.780362I
b = 1.229330 + 0.542511I
10.09350 + 8.94227I 0
u = 1.75503 0.68133I
a = 0.093305 + 0.780362I
b = 1.229330 0.542511I
10.09350 8.94227I 0
u = 1.64933 + 1.01561I
a = 0.043620 + 1.103240I
b = 1.205270 0.631705I
5.3380 14.9199I 0
u = 1.64933 1.01561I
a = 0.043620 1.103240I
b = 1.205270 + 0.631705I
5.3380 + 14.9199I 0
u = 2.11053 + 0.20467I
a = 0.206325 + 0.667266I
b = 0.947425 0.426776I
0.37870 + 1.85992I 0
u = 2.11053 0.20467I
a = 0.206325 0.667266I
b = 0.947425 + 0.426776I
0.37870 1.85992I 0
u = 0.36706 + 6.35882I
a = 0.047914 + 1.066360I
b = 0.815200 0.491841I
0.07826 + 2.04862I 0
u = 0.36706 6.35882I
a = 0.047914 1.066360I
b = 0.815200 + 0.491841I
0.07826 2.04862I 0
9
II. I
u
2
= h−215u
7
+ 940u
6
+ · · · + 714b + 456, 33u
7
457u
6
+ · · · + 714a
3697, u
8
4u
7
+ · · · + 2u + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
3
=
0.0462185u
7
+ 0.640056u
6
+ ··· + 1.90896u + 5.17787
0.301120u
7
1.31653u
6
+ ··· + 1.85574u 0.638655
a
7
=
1
u
2
a
2
=
0.254902u
7
0.676471u
6
+ ··· + 3.76471u + 4.53922
0.301120u
7
1.31653u
6
+ ··· + 1.85574u 0.638655
a
1
=
1.79552u
7
7.23389u
6
+ ··· + 17.5770u + 3.05462
0.151261u
7
+ 0.564426u
6
+ ··· 1.69188u 0.948179
a
5
=
0.610644u
7
+ 3.00700u
6
+ ··· 3.87955u + 4.56723
0.343137u
7
1.35294u
6
+ ··· + 3.02941u 0.254902
a
11
=
2.79552u
7
+ 11.2339u
6
+ ··· 28.5770u 5.05462
0.203081u
7
0.620448u
6
+ ··· + 4.22829u + 1.74370
a
4
=
1.06303u
7
+ 4.88796u
6
+ ··· 7.42717u + 4.25770
0.366947u
7
1.32913u
6
+ ··· + 3.33894u 0.326331
a
12
=
1.79552u
7
7.23389u
6
+ ··· + 17.5770u + 3.05462
0.302521u
7
+ 1.12885u
6
+ ··· 3.38375u 0.896359
a
9
=
2.79552u
7
11.2339u
6
+ ··· + 28.5770u + 5.05462
0.354342u
7
+ 1.18487u
6
+ ··· 4.92017u 1.69188
a
8
=
4.53922u
7
18.4118u
6
+ ··· + 45.6176u + 6.31373
0.697479u
7
+ 2.53782u
6
+ ··· 7.94958u 2.43697
(ii) Obstruction class = 1
(iii) Cusp Shapes =
70
51
u
7
+
92
17
u
6
+
112
51
u
5
956
51
u
4
568
51
u
3
196
51
u
2
206
17
u +
52
51
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
4
c
2
, c
5
(u
4
u
2
+ 1)
2
c
3
u
8
+ 2u
7
+ 11u
6
+ 6u
5
+ 8u
4
+ 12u
3
u
2
4u + 1
c
4
, c
8
(u
2
+ 1)
4
c
6
u
8
4u
7
u
6
+ 12u
5
+ 8u
4
+ 6u
3
+ 11u
2
+ 2u + 1
c
7
u
8
8u
7
+ 25u
6
38u
5
+ 33u
4
28u
3
+ 28u
2
16u + 4
c
9
(u
2
u 1)
4
c
10
(u
4
+ 3u
2
+ 1)
2
c
11
, c
12
(u
2
+ u 1)
4
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)
4
c
2
, c
5
(y
2
y + 1)
4
c
3
y
8
+ 18y
7
+ 113y
6
+ 90y
5
84y
4
90y
3
+ 113y
2
18y + 1
c
4
, c
8
(y + 1)
8
c
6
y
8
18y
7
+ 113y
6
90y
5
84y
4
+ 90y
3
+ 113y
2
+ 18y + 1
c
7
y
8
14y
7
+ 83y
6
186y
5
+ 113y
4
+ 48y
3
+ 152y
2
32y + 16
c
9
, c
11
, c
12
(y
2
3y + 1)
4
c
10
(y
2
+ 3y + 1)
4
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.216775 + 0.809017I
a = 0.712758 + 0.809017I
b = 0.866025 0.500000I
0.65797 2.02988I 2.00000 + 3.46410I
u = 0.216775 0.809017I
a = 0.712758 0.809017I
b = 0.866025 + 0.500000I
0.65797 + 2.02988I 2.00000 3.46410I
u = 1.153270 + 0.309017I
a = 0.350750 + 0.309017I
b = 0.866025 + 0.500000I
7.23771 2.02988I 2.00000 + 3.46410I
u = 1.153270 0.309017I
a = 0.350750 0.309017I
b = 0.866025 0.500000I
7.23771 + 2.02988I 2.00000 3.46410I
u = 0.082801 + 0.309017I
a = 4.88532 + 0.30902I
b = 0.866025 + 0.500000I
7.23771 + 2.02988I 2.00000 3.46410I
u = 0.082801 0.309017I
a = 4.88532 0.30902I
b = 0.866025 0.500000I
7.23771 2.02988I 2.00000 + 3.46410I
u = 3.01929 + 0.80902I
a = 0.051174 + 0.809017I
b = 0.866025 0.500000I
0.65797 + 2.02988I 2.00000 3.46410I
u = 3.01929 0.80902I
a = 0.051174 0.809017I
b = 0.866025 + 0.500000I
0.65797 2.02988I 2.00000 + 3.46410I
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
4
)(u
50
+ 27u
49
+ ··· + 279u + 81)
c
2
, c
5
((u
4
u
2
+ 1)
2
)(u
50
+ 3u
49
+ ··· + 27u + 9)
c
3
(u
8
+ 2u
7
+ 11u
6
+ 6u
5
+ 8u
4
+ 12u
3
u
2
4u + 1)
· (u
50
9u
49
+ ··· + 6491u + 1543)
c
4
, c
8
((u
2
+ 1)
4
)(u
50
+ 3u
49
+ ··· 72u + 36)
c
6
(u
8
4u
7
u
6
+ 12u
5
+ 8u
4
+ 6u
3
+ 11u
2
+ 2u + 1)
· (u
50
+ 3u
49
+ ··· + 20763u + 2467)
c
7
(u
8
8u
7
+ 25u
6
38u
5
+ 33u
4
28u
3
+ 28u
2
16u + 4)
· (u
50
3u
49
+ ··· 1360u + 64)
c
9
((u
2
u 1)
4
)(u
50
+ 5u
49
+ ··· + 11u + 1)
c
10
((u
4
+ 3u
2
+ 1)
2
)(u
50
u
49
+ ··· + 3u + 1)
c
11
, c
12
((u
2
+ u 1)
4
)(u
50
+ 5u
49
+ ··· + 11u + 1)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
4
)(y
50
3y
49
+ ··· 40743y + 6561)
c
2
, c
5
((y
2
y + 1)
4
)(y
50
27y
49
+ ··· 279y + 81)
c
3
(y
8
+ 18y
7
+ 113y
6
+ 90y
5
84y
4
90y
3
+ 113y
2
18y + 1)
· (y
50
137y
49
+ ··· + 71302107y + 2380849)
c
4
, c
8
((y + 1)
8
)(y
50
+ 53y
49
+ ··· + 2232y + 1296)
c
6
(y
8
18y
7
+ 113y
6
90y
5
84y
4
+ 90y
3
+ 113y
2
+ 18y + 1)
· (y
50
+ 43y
49
+ ··· 163462273y + 6086089)
c
7
(y
8
14y
7
+ 83y
6
186y
5
+ 113y
4
+ 48y
3
+ 152y
2
32y + 16)
· (y
50
+ 143y
49
+ ··· + 1959168y + 4096)
c
9
, c
11
, c
12
((y
2
3y + 1)
4
)(y
50
39y
49
+ ··· 35y + 1)
c
10
((y
2
+ 3y + 1)
4
)(y
50
+ 9y
49
+ ··· 35y + 1)
15