12n
0319
(K12n
0319
)
A knot diagram
1
Linearized knot diagam
3 6 8 11 2 4 11 12 1 6 4 9
Solving Sequence
4,6 7,12
11 8 9 3 2 1 5 10
c
6
c
11
c
7
c
8
c
3
c
2
c
1
c
5
c
10
c
4
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h2.38952 × 10
93
u
31
2.15372 × 10
94
u
30
+ ··· + 2.56436 × 10
95
b 7.20111 × 10
95
,
8.99453 × 10
94
u
31
+ 7.55251 × 10
95
u
30
+ ··· + 1.28218 × 10
96
a + 7.93300 × 10
96
,
u
32
8u
31
+ ··· 300u 25i
I
u
2
= h−255u
11
694u
10
+ ··· + b 720, 583u
11
1385u
10
+ ··· + a 850,
u
12
+ 3u
11
u
10
7u
9
+ 19u
8
+ 99u
7
+ 234u
6
+ 343u
5
+ 314u
4
+ 179u
3
+ 62u
2
+ 12u + 1i
* 2 irreducible components of dim
C
= 0, with total 44 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h2.39 × 10
93
u
31
2.15 × 10
94
u
30
+ · · · + 2.56 × 10
95
b 7.20 ×
10
95
, 8.99 × 10
94
u
31
+ 7.55 × 10
95
u
30
+ · · · + 1.28 × 10
96
a + 7.93 ×
10
96
, u
32
8u
31
+ · · · 300u 25i
(i) Arc colorings
a
4
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
12
=
0.0701502u
31
0.589036u
30
+ ··· 53.1722u 6.18711
0.00931818u
31
+ 0.0839867u
30
+ ··· + 19.4660u + 2.80815
a
11
=
0.0701502u
31
0.589036u
30
+ ··· 53.1722u 6.18711
0.00428886u
31
0.0294728u
30
+ ··· + 12.8694u + 2.11228
a
8
=
0.139715u
31
1.09759u
30
+ ··· 162.772u 15.3667
0.0410233u
31
+ 0.326903u
30
+ ··· + 50.9224u + 5.87488
a
9
=
0.114284u
31
+ 0.997908u
30
+ ··· 72.2217u 7.58056
0.0357130u
31
0.298486u
30
+ ··· 4.59855u + 0.151481
a
3
=
0.00605923u
31
0.0127608u
30
+ ··· 57.1169u 6.41631
0.00341044u
31
0.0414358u
30
+ ··· + 35.9729u + 4.57856
a
2
=
0.00946966u
31
0.0541966u
30
+ ··· 21.1440u 1.83775
0.00341044u
31
0.0414358u
30
+ ··· + 35.9729u + 4.57856
a
1
=
0.102606u
31
0.898043u
30
+ ··· + 90.8067u + 10.9018
0.0317497u
31
+ 0.264273u
30
+ ··· + 7.01197u + 0.281882
a
5
=
0.0314017u
31
0.300910u
30
+ ··· + 57.4657u + 7.12226
0.00733120u
31
+ 0.0774930u
30
+ ··· 38.6716u 4.73528
a
10
=
0.0658613u
31
0.559563u
30
+ ··· 66.0416u 8.29939
0.00428886u
31
0.0294728u
30
+ ··· + 12.8694u + 2.11228
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.253355u
31
2.01113u
30
+ ··· 403.608u 50.8053
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
32
+ 27u
31
+ ··· + 673u + 1
c
2
, c
5
u
32
+ u
31
+ ··· 23u + 1
c
3
u
32
+ 2u
31
+ ··· 42u 19
c
4
, c
11
u
32
u
31
+ ··· + 10u 1
c
6
u
32
8u
31
+ ··· 300u 25
c
7
u
32
3u
31
+ ··· + 1686u + 41
c
8
, c
9
, c
12
u
32
+ 3u
31
+ ··· + 15u 29
c
10
u
32
+ 3u
31
+ ··· 37856u 9991
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
32
35y
31
+ ··· 466213y + 1
c
2
, c
5
y
32
27y
31
+ ··· 673y + 1
c
3
y
32
6y
31
+ ··· 2866y + 361
c
4
, c
11
y
32
+ 45y
31
+ ··· 158y + 1
c
6
y
32
82y
31
+ ··· + 6850y + 625
c
7
y
32
+ 61y
31
+ ··· 2599876y + 1681
c
8
, c
9
, c
12
y
32
43y
31
+ ··· 24875y + 841
c
10
y
32
+ 69y
31
+ ··· 909927994y + 99820081
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.197289 + 0.790742I
a = 1.185250 + 0.678056I
b = 0.453864 0.396921I
1.17179 1.02205I 9.29559 0.44678I
u = 0.197289 0.790742I
a = 1.185250 0.678056I
b = 0.453864 + 0.396921I
1.17179 + 1.02205I 9.29559 + 0.44678I
u = 0.299086 + 1.150790I
a = 0.0080471 + 0.0961297I
b = 0.628217 + 0.060085I
2.11287 + 2.53091I 5.79491 0.47582I
u = 0.299086 1.150790I
a = 0.0080471 0.0961297I
b = 0.628217 0.060085I
2.11287 2.53091I 5.79491 + 0.47582I
u = 0.192167 + 0.775949I
a = 1.404300 0.081966I
b = 0.364013 1.054130I
6.40829 + 3.07693I 7.10952 3.47095I
u = 0.192167 0.775949I
a = 1.404300 + 0.081966I
b = 0.364013 + 1.054130I
6.40829 3.07693I 7.10952 + 3.47095I
u = 1.20877
a = 0.173934
b = 2.03957
6.85965 17.0320
u = 0.727605
a = 1.88288
b = 0.166504
7.46881 13.7170
u = 0.650840
a = 0.792502
b = 0.0256764
1.50430 6.06880
u = 0.303065 + 0.488280I
a = 1.67068 + 0.64751I
b = 1.052950 0.482581I
1.17553 + 2.30017I 10.81580 3.72452I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.303065 0.488280I
a = 1.67068 0.64751I
b = 1.052950 + 0.482581I
1.17553 2.30017I 10.81580 + 3.72452I
u = 0.350721
a = 1.62466
b = 0.817925
2.83439 1.03330
u = 0.089144 + 0.338495I
a = 2.77884 + 3.13257I
b = 0.124470 1.064190I
11.30980 + 7.23064I 10.49848 5.56490I
u = 0.089144 0.338495I
a = 2.77884 3.13257I
b = 0.124470 + 1.064190I
11.30980 7.23064I 10.49848 + 5.56490I
u = 0.084309 + 0.271616I
a = 1.52532 + 1.43742I
b = 0.027514 + 0.487501I
0.193873 + 1.035160I 3.30197 6.61105I
u = 0.084309 0.271616I
a = 1.52532 1.43742I
b = 0.027514 0.487501I
0.193873 1.035160I 3.30197 + 6.61105I
u = 0.263547 + 0.101009I
a = 0.39229 3.09375I
b = 0.088766 + 1.320520I
3.69901 + 3.15402I 10.25267 6.17085I
u = 0.263547 0.101009I
a = 0.39229 + 3.09375I
b = 0.088766 1.320520I
3.69901 3.15402I 10.25267 + 6.17085I
u = 0.09080 + 2.11846I
a = 0.508788 0.094674I
b = 1.05942 + 1.08265I
10.49350 + 1.26769I 0
u = 0.09080 2.11846I
a = 0.508788 + 0.094674I
b = 1.05942 1.08265I
10.49350 1.26769I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 2.12482 + 0.01926I
a = 0.001205 + 0.868470I
b = 0.29154 1.72481I
12.56270 0.83637I 0
u = 2.12482 0.01926I
a = 0.001205 0.868470I
b = 0.29154 + 1.72481I
12.56270 + 0.83637I 0
u = 2.36872 + 0.16438I
a = 0.084723 0.669788I
b = 0.11322 + 2.10961I
7.72510 2.29615I 0
u = 2.36872 0.16438I
a = 0.084723 + 0.669788I
b = 0.11322 2.10961I
7.72510 + 2.29615I 0
u = 2.59941 + 0.20248I
a = 0.035870 0.679734I
b = 0.71473 + 2.13119I
18.4946 2.1635I 0
u = 2.59941 0.20248I
a = 0.035870 + 0.679734I
b = 0.71473 2.13119I
18.4946 + 2.1635I 0
u = 2.80747 + 0.15741I
a = 0.002410 0.627895I
b = 0.69377 + 2.39073I
16.6434 + 4.8981I 0
u = 2.80747 0.15741I
a = 0.002410 + 0.627895I
b = 0.69377 2.39073I
16.6434 4.8981I 0
u = 3.02521 + 0.40807I
a = 0.006648 + 0.594266I
b = 0.55522 2.49269I
17.8060 11.5990I 0
u = 3.02521 0.40807I
a = 0.006648 0.594266I
b = 0.55522 + 2.49269I
17.8060 + 11.5990I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 3.68008 + 0.58451I
a = 0.101580 + 0.427871I
b = 0.25407 2.77344I
11.97980 + 5.22512I 0
u = 3.68008 0.58451I
a = 0.101580 0.427871I
b = 0.25407 + 2.77344I
11.97980 5.22512I 0
8
II. I
u
2
= h−255u
11
694u
10
+ · · · + b 720, 583u
11
1385u
10
+ · · · + a
850, u
12
+ 3u
11
+ · · · + 12u + 1i
(i) Arc colorings
a
4
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
12
=
583u
11
+ 1385u
10
+ ··· + 9095u + 850
255u
11
+ 694u
10
+ ··· + 6836u + 720
a
11
=
583u
11
+ 1385u
10
+ ··· + 9095u + 850
465u
11
+ 1211u
10
+ ··· + 10621u + 1084
a
8
=
12u
11
34u
10
+ ··· 515u 70
256u
11
640u
10
+ ··· 5120u 513
a
9
=
429u
11
+ 1141u
10
+ ··· + 10869u + 1129
u
11
+ 10u
10
+ ··· + 332u + 47
a
3
=
47u
11
140u
10
+ ··· 1937u 232
u
11
3u
10
+ ··· 62u 11
a
2
=
48u
11
143u
10
+ ··· 1999u 243
u
11
3u
10
+ ··· 62u 11
a
1
=
382u
11
+ 1008u
10
+ ··· + 9202u + 932
48u
11
+ 135u
10
+ ··· + 1679u + 197
a
5
=
195u
11
538u
10
+ ··· 6031u 673
10u
11
29u
10
+ ··· 441u 59
a
10
=
118u
11
+ 174u
10
+ ··· 1526u 234
465u
11
+ 1211u
10
+ ··· + 10621u + 1084
(ii) Obstruction class = 1
(iii) Cusp Shapes = 557u
11
1504u
10
+ 1049u
9
+ 3665u
8
11818u
7
51768u
6
113824u
5
153844u
4
122639u
3
56077u
2
13659u 1383
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
8u
11
+ ··· 11u + 1
c
2
u
12
4u
10
+ u
9
+ 8u
8
3u
7
11u
6
+ 4u
5
+ 10u
4
4u
3
5u
2
+ u + 1
c
3
u
12
+ u
11
+ 3u
10
+ 2u
9
+ u
8
u
7
2u
6
5u
5
+ 2u
4
2u
3
+ 2u
2
1
c
4
u
12
+ 8u
10
+ 23u
8
u
7
+ 26u
6
5u
5
+ 5u
4
7u
3
6u
2
2u 1
c
5
u
12
4u
10
u
9
+ 8u
8
+ 3u
7
11u
6
4u
5
+ 10u
4
+ 4u
3
5u
2
u + 1
c
6
u
12
+ 3u
11
+ ··· + 12u + 1
c
7
u
12
+ 4u
10
+ ··· 8u + 1
c
8
, c
9
u
12
+ 4u
11
+ ··· u + 1
c
10
u
12
+ 4u
11
+ ··· 2u + 1
c
11
u
12
+ 8u
10
+ 23u
8
+ u
7
+ 26u
6
+ 5u
5
+ 5u
4
+ 7u
3
6u
2
+ 2u 1
c
12
u
12
4u
11
+ ··· + u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
12y
10
+ ··· 15y + 1
c
2
, c
5
y
12
8y
11
+ ··· 11y + 1
c
3
y
12
+ 5y
11
+ 7y
10
+ 7y
8
+ 35y
7
+ 16y
6
39y
5
26y
4
+ 8y
3
4y + 1
c
4
, c
11
y
12
+ 16y
11
+ ··· + 8y + 1
c
6
y
12
11y
11
+ ··· 20y + 1
c
7
y
12
+ 8y
11
+ ··· 22y + 1
c
8
, c
9
, c
12
y
12
16y
11
+ ··· + 23y + 1
c
10
y
12
+ 4y
11
+ ··· 20y + 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.614910
a = 0.756088
b = 0.764925
3.38826 14.4840
u = 0.215601 + 1.381410I
a = 0.288748 0.106147I
b = 0.283384 + 0.092414I
1.69154 + 2.70631I 11.02847 6.50238I
u = 0.215601 1.381410I
a = 0.288748 + 0.106147I
b = 0.283384 0.092414I
1.69154 2.70631I 11.02847 + 6.50238I
u = 0.484089 + 0.123501I
a = 0.24097 1.98728I
b = 0.879338 + 0.481043I
0.12267 1.98013I 3.12844 + 2.86006I
u = 0.484089 0.123501I
a = 0.24097 + 1.98728I
b = 0.879338 0.481043I
0.12267 + 1.98013I 3.12844 2.86006I
u = 0.445198 + 0.198592I
a = 1.35255 + 2.90526I
b = 0.766353 0.473864I
5.28947 3.09904I 8.62038 + 2.82123I
u = 0.445198 0.198592I
a = 1.35255 2.90526I
b = 0.766353 + 0.473864I
5.28947 + 3.09904I 8.62038 2.82123I
u = 0.438663
a = 1.76179
b = 1.21224
6.05655 5.50250
u = 2.04805 + 0.64643I
a = 0.276703 + 0.652409I
b = 0.25152 2.07706I
9.00537 2.27031I 12.11846 + 2.13201I
u = 2.04805 0.64643I
a = 0.276703 0.652409I
b = 0.25152 + 2.07706I
9.00537 + 2.27031I 12.11846 2.13201I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 2.21973 + 1.41604I
a = 0.403311 0.470237I
b = 0.90746 + 1.60507I
12.16040 + 3.87633I 12.61114 1.47831I
u = 2.21973 1.41604I
a = 0.403311 + 0.470237I
b = 0.90746 1.60507I
12.16040 3.87633I 12.61114 + 1.47831I
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
12
8u
11
+ ··· 11u + 1)(u
32
+ 27u
31
+ ··· + 673u + 1)
c
2
(u
12
4u
10
+ u
9
+ 8u
8
3u
7
11u
6
+ 4u
5
+ 10u
4
4u
3
5u
2
+ u + 1)
· (u
32
+ u
31
+ ··· 23u + 1)
c
3
(u
12
+ u
11
+ 3u
10
+ 2u
9
+ u
8
u
7
2u
6
5u
5
+ 2u
4
2u
3
+ 2u
2
1)
· (u
32
+ 2u
31
+ ··· 42u 19)
c
4
(u
12
+ 8u
10
+ 23u
8
u
7
+ 26u
6
5u
5
+ 5u
4
7u
3
6u
2
2u 1)
· (u
32
u
31
+ ··· + 10u 1)
c
5
(u
12
4u
10
u
9
+ 8u
8
+ 3u
7
11u
6
4u
5
+ 10u
4
+ 4u
3
5u
2
u + 1)
· (u
32
+ u
31
+ ··· 23u + 1)
c
6
(u
12
+ 3u
11
+ ··· + 12u + 1)(u
32
8u
31
+ ··· 300u 25)
c
7
(u
12
+ 4u
10
+ ··· 8u + 1)(u
32
3u
31
+ ··· + 1686u + 41)
c
8
, c
9
(u
12
+ 4u
11
+ ··· u + 1)(u
32
+ 3u
31
+ ··· + 15u 29)
c
10
(u
12
+ 4u
11
+ ··· 2u + 1)(u
32
+ 3u
31
+ ··· 37856u 9991)
c
11
(u
12
+ 8u
10
+ 23u
8
+ u
7
+ 26u
6
+ 5u
5
+ 5u
4
+ 7u
3
6u
2
+ 2u 1)
· (u
32
u
31
+ ··· + 10u 1)
c
12
(u
12
4u
11
+ ··· + u + 1)(u
32
+ 3u
31
+ ··· + 15u 29)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
12
12y
10
+ ··· 15y + 1)(y
32
35y
31
+ ··· 466213y + 1)
c
2
, c
5
(y
12
8y
11
+ ··· 11y + 1)(y
32
27y
31
+ ··· 673y + 1)
c
3
(y
12
+ 5y
11
+ 7y
10
+ 7y
8
+ 35y
7
+ 16y
6
39y
5
26y
4
+ 8y
3
4y + 1)
· (y
32
6y
31
+ ··· 2866y + 361)
c
4
, c
11
(y
12
+ 16y
11
+ ··· + 8y + 1)(y
32
+ 45y
31
+ ··· 158y + 1)
c
6
(y
12
11y
11
+ ··· 20y + 1)(y
32
82y
31
+ ··· + 6850y + 625)
c
7
(y
12
+ 8y
11
+ ··· 22y + 1)(y
32
+ 61y
31
+ ··· 2599876y + 1681)
c
8
, c
9
, c
12
(y
12
16y
11
+ ··· + 23y + 1)(y
32
43y
31
+ ··· 24875y + 841)
c
10
(y
12
+ 4y
11
+ ··· 20y + 1)
· (y
32
+ 69y
31
+ ··· 909927994y + 99820081)
15