12n
0320
(K12n
0320
)
A knot diagram
1
Linearized knot diagam
3 6 8 7 2 9 10 12 5 4 8 9
Solving Sequence
6,9 3,7
2 1 5 10 4 12 8 11
c
6
c
2
c
1
c
5
c
9
c
4
c
12
c
8
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h1.94964 × 10
382
u
72
+ 1.20690 × 10
383
u
71
+ ··· + 5.33896 × 10
384
b 1.10225 × 10
386
,
1.84504 × 10
385
u
72
1.15557 × 10
386
u
71
+ ··· + 1.20981 × 10
387
a + 8.26575 × 10
388
,
u
73
+ 6u
72
+ ··· 18561u + 1133i
I
u
2
= h−362677236u
12
+ 287880043u
11
+ ··· + 2896442647b + 2924763966,
938151764u
12
1358804549u
11
+ ··· + 2896442647a 4249866059,
u
13
+ u
11
+ 11u
10
+ 2u
9
+ 8u
8
+ 62u
7
17u
6
+ 25u
5
7u
4
10u
3
+ 2u
2
+ 1i
I
u
3
= hu
4
+ 2u
3
u
2
+ b 2u, 2u
5
+ 5u
4
2u
3
9u
2
+ a + u + 4, u
6
+ 3u
5
5u
3
u
2
+ 2u + 1i
* 3 irreducible components of dim
C
= 0, with total 92 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.95 × 10
382
u
72
+ 1.21 × 10
383
u
71
+ · · · + 5.34 × 10
384
b 1.10 ×
10
386
, 1.85 × 10
385
u
72
1.16 × 10
386
u
71
+ · · · + 1.21 × 10
387
a + 8.27 ×
10
388
, u
73
+ 6u
72
+ · · · 18561u + 1133i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
3
=
0.0152507u
72
+ 0.0955166u
71
+ ··· + 844.480u 68.3229
0.00365172u
72
0.0226055u
71
+ ··· 241.555u + 20.6453
a
7
=
1
u
2
a
2
=
0.0115990u
72
+ 0.0729111u
71
+ ··· + 602.925u 47.6775
0.00365172u
72
0.0226055u
71
+ ··· 241.555u + 20.6453
a
1
=
0.0167624u
72
0.103452u
71
+ ··· 1190.73u + 109.121
0.00289105u
72
+ 0.0179807u
71
+ ··· + 190.095u 18.3749
a
5
=
0.0184116u
72
+ 0.114807u
71
+ ··· + 1089.39u 91.6124
0.00601210u
72
0.0371863u
71
+ ··· 388.300u + 34.2741
a
10
=
0.00271928u
72
0.0151351u
71
+ ··· 390.211u + 41.7955
0.00573011u
72
+ 0.0357021u
71
+ ··· + 366.128u 31.6795
a
4
=
0.0255847u
72
+ 0.159203u
71
+ ··· + 1537.33u 130.800
0.00565886u
72
0.0350883u
71
+ ··· 371.217u + 32.7353
a
12
=
0.0167624u
72
0.103452u
71
+ ··· 1190.73u + 109.121
0.00250121u
72
+ 0.0155056u
71
+ ··· + 155.679u 15.1148
a
8
=
0.0117290u
72
+ 0.0727452u
71
+ ··· + 719.230u 62.4670
0.00246932u
72
0.0152327u
71
+ ··· 178.421u + 16.4833
a
11
=
0.0182906u
72
0.113075u
71
+ ··· 1255.70u + 113.788
0.000808248u
72
+ 0.00493055u
71
+ ··· + 38.6483u 5.11399
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0291619u
72
+ 0.179368u
71
+ ··· + 1994.61u 181.670
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
73
+ 40u
72
+ ··· + 26772u + 121
c
2
, c
5
u
73
+ 2u
72
+ ··· + 146u 11
c
3
u
73
+ 3u
72
+ ··· + 31u 1
c
4
u
73
+ 7u
72
+ ··· 96u + 64
c
6
u
73
6u
72
+ ··· 18561u 1133
c
7
u
73
3u
72
+ ··· 12u 1
c
8
, c
11
, c
12
u
73
u
72
+ ··· 11u 1
c
9
u
73
u
72
+ ··· 11u 19
c
10
u
73
+ 3u
72
+ ··· 23u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
73
8y
72
+ ··· + 632441220y 14641
c
2
, c
5
y
73
40y
72
+ ··· + 26772y 121
c
3
y
73
71y
72
+ ··· 323y 1
c
4
y
73
+ 29y
72
+ ··· 1084416y 4096
c
6
y
73
34y
72
+ ··· + 64177063y 1283689
c
7
y
73
19y
72
+ ··· + 32y 1
c
8
, c
11
, c
12
y
73
17y
72
+ ··· 37y 1
c
9
y
73
+ 21y
72
+ ··· 26327y 361
c
10
y
73
+ 53y
72
+ ··· + 217y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.031340 + 0.008433I
a = 0.069808 + 1.084620I
b = 1.375400 0.230767I
8.53900 6.42718I 0
u = 1.031340 0.008433I
a = 0.069808 1.084620I
b = 1.375400 + 0.230767I
8.53900 + 6.42718I 0
u = 1.016880 + 0.247438I
a = 0.18301 + 1.43687I
b = 1.134700 0.389357I
3.48643 1.34087I 0
u = 1.016880 0.247438I
a = 0.18301 1.43687I
b = 1.134700 + 0.389357I
3.48643 + 1.34087I 0
u = 0.698200 + 0.781658I
a = 0.086270 0.883147I
b = 0.143676 + 0.967502I
2.76121 + 4.17164I 0
u = 0.698200 0.781658I
a = 0.086270 + 0.883147I
b = 0.143676 0.967502I
2.76121 4.17164I 0
u = 0.923453 + 0.507277I
a = 0.711008 0.775964I
b = 0.052883 + 0.873653I
3.09395 3.25435I 0
u = 0.923453 0.507277I
a = 0.711008 + 0.775964I
b = 0.052883 0.873653I
3.09395 + 3.25435I 0
u = 0.320327 + 1.015200I
a = 0.345566 + 1.000120I
b = 0.139397 0.696765I
1.29497 2.48132I 0
u = 0.320327 1.015200I
a = 0.345566 1.000120I
b = 0.139397 + 0.696765I
1.29497 + 2.48132I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.102722 + 0.909943I
a = 1.58395 1.09523I
b = 0.999021 + 0.236970I
0.52366 + 1.44354I 0
u = 0.102722 0.909943I
a = 1.58395 + 1.09523I
b = 0.999021 0.236970I
0.52366 1.44354I 0
u = 1.080410 + 0.103383I
a = 0.551852 + 0.897401I
b = 0.020100 0.900171I
4.24460 3.95976I 0
u = 1.080410 0.103383I
a = 0.551852 0.897401I
b = 0.020100 + 0.900171I
4.24460 + 3.95976I 0
u = 0.972563 + 0.495097I
a = 0.18790 + 1.67102I
b = 1.258500 0.462677I
8.13571 + 8.75720I 0
u = 0.972563 0.495097I
a = 0.18790 1.67102I
b = 1.258500 + 0.462677I
8.13571 8.75720I 0
u = 0.845098 + 0.817919I
a = 0.223034 + 0.772508I
b = 0.195678 0.647035I
0.02539 2.06580I 0
u = 0.845098 0.817919I
a = 0.223034 0.772508I
b = 0.195678 + 0.647035I
0.02539 + 2.06580I 0
u = 0.704242 + 0.317833I
a = 0.59265 2.07838I
b = 1.251460 + 0.483613I
6.73334 1.65613I 2.92629 + 0.79234I
u = 0.704242 0.317833I
a = 0.59265 + 2.07838I
b = 1.251460 0.483613I
6.73334 + 1.65613I 2.92629 0.79234I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.556762 + 0.475035I
a = 0.324680 + 0.714527I
b = 1.215180 0.518061I
1.72177 1.34235I 1.77903 + 5.54028I
u = 0.556762 0.475035I
a = 0.324680 0.714527I
b = 1.215180 + 0.518061I
1.72177 + 1.34235I 1.77903 5.54028I
u = 0.457882 + 1.231170I
a = 0.082528 0.200066I
b = 0.705147 + 0.340560I
1.30339 1.96383I 0
u = 0.457882 1.231170I
a = 0.082528 + 0.200066I
b = 0.705147 0.340560I
1.30339 + 1.96383I 0
u = 1.327210 + 0.201548I
a = 0.032088 0.895329I
b = 1.295440 + 0.256609I
9.63449 0.84683I 0
u = 1.327210 0.201548I
a = 0.032088 + 0.895329I
b = 1.295440 0.256609I
9.63449 + 0.84683I 0
u = 1.279340 + 0.555895I
a = 0.041703 1.054370I
b = 0.324932 + 0.913616I
4.31900 2.85477I 0
u = 1.279340 0.555895I
a = 0.041703 + 1.054370I
b = 0.324932 0.913616I
4.31900 + 2.85477I 0
u = 1.293390 + 0.552574I
a = 0.307125 0.021259I
b = 0.769443 + 0.511761I
3.52478 2.09880I 0
u = 1.293390 0.552574I
a = 0.307125 + 0.021259I
b = 0.769443 0.511761I
3.52478 + 2.09880I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.564547
a = 1.46692
b = 0.0693710
1.42881 7.52280
u = 1.19035 + 0.80455I
a = 0.040182 + 1.009980I
b = 0.285323 1.026970I
2.73397 + 10.71610I 0
u = 1.19035 0.80455I
a = 0.040182 1.009980I
b = 0.285323 + 1.026970I
2.73397 10.71610I 0
u = 0.82644 + 1.17623I
a = 0.666106 1.183330I
b = 0.932325 + 0.388293I
0.79582 6.86751I 0
u = 0.82644 1.17623I
a = 0.666106 + 1.183330I
b = 0.932325 0.388293I
0.79582 + 6.86751I 0
u = 0.529293 + 0.181821I
a = 0.639919 1.224910I
b = 1.275540 + 0.261362I
2.37007 + 0.33063I 5.36190 + 8.76599I
u = 0.529293 0.181821I
a = 0.639919 + 1.224910I
b = 1.275540 0.261362I
2.37007 0.33063I 5.36190 8.76599I
u = 1.42533 + 0.24670I
a = 0.050785 0.805780I
b = 0.891619 + 0.767472I
3.06820 2.89868I 0
u = 1.42533 0.24670I
a = 0.050785 + 0.805780I
b = 0.891619 0.767472I
3.06820 + 2.89868I 0
u = 1.19516 + 0.92757I
a = 0.115452 + 1.011240I
b = 1.249180 0.552747I
0.61277 + 9.60861I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.19516 0.92757I
a = 0.115452 1.011240I
b = 1.249180 + 0.552747I
0.61277 9.60861I 0
u = 1.40807 + 0.66939I
a = 0.460393 + 0.498489I
b = 0.913659 0.284641I
0.829050 + 0.928279I 0
u = 1.40807 0.66939I
a = 0.460393 0.498489I
b = 0.913659 + 0.284641I
0.829050 0.928279I 0
u = 0.37186 + 1.51517I
a = 0.603407 0.886155I
b = 0.791457 + 0.373687I
0.66969 3.07517I 0
u = 0.37186 1.51517I
a = 0.603407 + 0.886155I
b = 0.791457 0.373687I
0.66969 + 3.07517I 0
u = 0.168757 + 0.338708I
a = 1.39461 1.59302I
b = 0.849357 0.685739I
7.96391 + 2.63534I 10.53738 3.36691I
u = 0.168757 0.338708I
a = 1.39461 + 1.59302I
b = 0.849357 + 0.685739I
7.96391 2.63534I 10.53738 + 3.36691I
u = 1.60775 + 0.25073I
a = 0.058800 0.535382I
b = 1.270170 + 0.471642I
8.07804 + 0.96725I 0
u = 1.60775 0.25073I
a = 0.058800 + 0.535382I
b = 1.270170 0.471642I
8.07804 0.96725I 0
u = 1.62701 + 0.14118I
a = 0.057887 + 1.157310I
b = 0.885594 0.751718I
4.19772 2.84969I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.62701 0.14118I
a = 0.057887 1.157310I
b = 0.885594 + 0.751718I
4.19772 + 2.84969I 0
u = 0.332878 + 0.028795I
a = 6.64477 + 4.14556I
b = 0.856356 + 0.076377I
0.469074 + 0.132162I 52.8630 35.7017I
u = 0.332878 0.028795I
a = 6.64477 4.14556I
b = 0.856356 0.076377I
0.469074 0.132162I 52.8630 + 35.7017I
u = 0.61123 + 1.63936I
a = 0.364083 + 0.786880I
b = 0.676939 0.447545I
0.01496 3.34458I 0
u = 0.61123 1.63936I
a = 0.364083 0.786880I
b = 0.676939 + 0.447545I
0.01496 + 3.34458I 0
u = 0.077199 + 0.194945I
a = 1.045320 + 0.356695I
b = 0.680238 + 1.054680I
0.55649 + 4.84325I 9.6053 10.7522I
u = 0.077199 0.194945I
a = 1.045320 0.356695I
b = 0.680238 1.054680I
0.55649 4.84325I 9.6053 + 10.7522I
u = 0.190020 + 0.008741I
a = 3.18173 + 0.88298I
b = 0.832237 0.401743I
1.68584 0.75262I 4.20696 + 3.02462I
u = 0.190020 0.008741I
a = 3.18173 0.88298I
b = 0.832237 + 0.401743I
1.68584 + 0.75262I 4.20696 3.02462I
u = 1.14874 + 1.41502I
a = 0.090176 0.812042I
b = 1.172430 + 0.484972I
1.69151 6.95731I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.14874 1.41502I
a = 0.090176 + 0.812042I
b = 1.172430 0.484972I
1.69151 + 6.95731I 0
u = 1.72102 + 0.61105I
a = 0.084879 0.409811I
b = 0.915829 0.198212I
4.61519 0.89594I 0
u = 1.72102 0.61105I
a = 0.084879 + 0.409811I
b = 0.915829 + 0.198212I
4.61519 + 0.89594I 0
u = 1.69805 + 0.77805I
a = 0.034519 + 1.038170I
b = 1.197940 0.626774I
6.94494 8.52178I 0
u = 1.69805 0.77805I
a = 0.034519 1.038170I
b = 1.197940 + 0.626774I
6.94494 + 8.52178I 0
u = 1.78485 + 0.62481I
a = 0.035007 + 0.478103I
b = 1.246140 0.443705I
7.01799 7.84696I 0
u = 1.78485 0.62481I
a = 0.035007 0.478103I
b = 1.246140 + 0.443705I
7.01799 + 7.84696I 0
u = 1.64823 + 1.00779I
a = 0.019327 0.971347I
b = 1.246010 + 0.626078I
5.7190 + 16.6662I 0
u = 1.64823 1.00779I
a = 0.019327 + 0.971347I
b = 1.246010 0.626078I
5.7190 16.6662I 0
u = 1.64963 + 1.05225I
a = 0.079258 0.840196I
b = 1.137360 + 0.514079I
2.59231 6.57079I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.64963 1.05225I
a = 0.079258 + 0.840196I
b = 1.137360 0.514079I
2.59231 + 6.57079I 0
u = 0.18175 + 2.19918I
a = 0.299156 + 0.533354I
b = 0.867813 0.323965I
0.85745 6.14484I 0
u = 0.18175 2.19918I
a = 0.299156 0.533354I
b = 0.867813 + 0.323965I
0.85745 + 6.14484I 0
12
II.
I
u
2
= h−3.63 × 10
8
u
12
+ 2.88 × 10
8
u
11
+ · · · + 2.90 × 10
9
b + 2.92 × 10
9
, 9.38 ×
10
8
u
12
1.36×10
9
u
11
+· · · +2.90×10
9
a4.25×10
9
, u
13
+u
11
+· · · +2u
2
+1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
3
=
0.323898u
12
+ 0.469129u
11
+ ··· 1.53927u + 1.46727
0.125215u
12
0.0993909u
11
+ ··· + 0.800156u 1.00978
a
7
=
1
u
2
a
2
=
0.449113u
12
+ 0.369738u
11
+ ··· 0.739109u + 0.457493
0.125215u
12
0.0993909u
11
+ ··· + 0.800156u 1.00978
a
1
=
0.728746u
12
0.224556u
11
+ ··· + 6.06123u + 0.869555
0.0551268u
12
+ 0.0473930u
11
+ ··· 0.349385u 1.07001
a
5
=
0.224507u
12
+ 0.453099u
11
+ ··· 3.54904u + 1.34206
0.200391u
12
0.149232u
11
+ ··· + 1.25064u 0.641494
a
10
=
0.728746u
12
+ 0.224556u
11
+ ··· 6.06123u 0.869555
0.462877u
12
+ 0.0898353u
11
+ ··· + 0.207205u + 0.575649
a
4
=
0.0112639u
12
+ 0.631242u
11
+ ··· 5.02419u + 1.53045
0.243853u
12
0.165387u
11
+ ··· + 1.48641u 0.819637
a
12
=
0.728746u
12
0.224556u
11
+ ··· + 6.06123u + 0.869555
0.239996u
12
+ 0.0841438u
11
+ ··· 1.07813u 0.845449
a
8
=
1.80021u
12
0.278008u
11
+ ··· + 8.51205u + 1.52154
0.477728u
12
+ 0.0168202u
11
+ ··· 1.73086u 1.17273
a
11
=
2.02476u
12
+ 0.0931390u
11
+ ··· 7.64250u 1.25029
0.737360u
12
+ 0.126794u
11
+ ··· + 1.08449u + 1.08780
(ii) Obstruction class = 1
(iii) Cusp Shapes =
829234359
2896442647
u
12
+
370579677
413777521
u
11
+ ···
19569538353
2896442647
u
2261800129
2896442647
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
7u
12
+ ··· + 7u 1
c
2
u
13
u
12
+ ··· u 1
c
3
u
13
+ 2u
12
+ ··· 4u 1
c
4
u
13
+ 4u
11
+ ··· + 317u 19
c
5
u
13
+ u
12
+ ··· u + 1
c
6
u
13
+ u
11
+ ··· + 2u
2
+ 1
c
7
u
13
+ u
12
+ ··· + 5u + 1
c
8
u
13
8u
12
+ ··· 4u + 1
c
9
u
13
+ 4u
11
+ 5u
9
+ u
8
+ 2u
7
+ 3u
6
u
5
+ 3u
4
2u
3
+ 2u
2
+ 1
c
10
u
13
+ 2u
11
2u
10
+ 3u
9
u
8
+ 3u
7
+ 2u
6
+ u
5
+ 5u
4
+ 4u
2
+ 1
c
11
, c
12
u
13
+ 8u
12
+ ··· 4u 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
+ y
12
+ ··· 5y 1
c
2
, c
5
y
13
7y
12
+ ··· + 7y 1
c
3
y
13
14y
12
+ ··· + 20y 1
c
4
y
13
+ 8y
12
+ ··· + 106151y 361
c
6
y
13
+ 2y
12
+ ··· 4y 1
c
7
y
13
7y
12
+ ··· + 9y 1
c
8
, c
11
, c
12
y
13
12y
12
+ ··· 4y 1
c
9
y
13
+ 8y
12
+ ··· 4y 1
c
10
y
13
+ 4y
12
+ ··· 8y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.034638 + 0.808086I
a = 0.111409 + 0.893993I
b = 0.526985 0.893318I
1.01859 4.74508I 7.57177 + 6.41095I
u = 0.034638 0.808086I
a = 0.111409 0.893993I
b = 0.526985 + 0.893318I
1.01859 + 4.74508I 7.57177 6.41095I
u = 0.551883
a = 2.82392
b = 0.786174
0.523382 4.29060
u = 0.511807 + 0.159844I
a = 0.02485 + 1.62930I
b = 1.269700 0.400560I
2.26904 0.89336I 4.11638 + 1.75348I
u = 0.511807 0.159844I
a = 0.02485 1.62930I
b = 1.269700 + 0.400560I
2.26904 + 0.89336I 4.11638 1.75348I
u = 0.137123 + 0.367985I
a = 3.01835 0.41849I
b = 0.876022 + 0.657317I
7.06478 + 2.55494I 0.70865 2.59980I
u = 0.137123 0.367985I
a = 3.01835 + 0.41849I
b = 0.876022 0.657317I
7.06478 2.55494I 0.70865 + 2.59980I
u = 0.42965 + 1.86940I
a = 0.045461 + 0.869498I
b = 0.559964 0.334651I
0.38012 4.16412I 0.22979 + 8.48801I
u = 0.42965 1.86940I
a = 0.045461 0.869498I
b = 0.559964 + 0.334651I
0.38012 + 4.16412I 0.22979 8.48801I
u = 1.91064 + 0.61379I
a = 0.171924 + 0.034388I
b = 0.881456 + 0.333147I
5.04599 1.42504I 7.51174 + 5.79280I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.91064 0.61379I
a = 0.171924 0.034388I
b = 0.881456 0.333147I
5.04599 + 1.42504I 7.51174 5.79280I
u = 1.34760 + 1.54920I
a = 0.039967 0.870494I
b = 1.124380 + 0.455563I
2.51722 7.71156I 3.80070 + 11.12971I
u = 1.34760 1.54920I
a = 0.039967 + 0.870494I
b = 1.124380 0.455563I
2.51722 + 7.71156I 3.80070 11.12971I
17
III. I
u
3
= hu
4
+ 2u
3
u
2
+ b 2u, 2u
5
+ 5u
4
2u
3
9u
2
+ a + u + 4, u
6
+
3u
5
5u
3
u
2
+ 2u + 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
3
=
2u
5
5u
4
+ 2u
3
+ 9u
2
u 4
u
4
2u
3
+ u
2
+ 2u
a
7
=
1
u
2
a
2
=
2u
5
6u
4
+ 10u
2
+ u 4
u
4
2u
3
+ u
2
+ 2u
a
1
=
u
5
3u
4
+ 5u
2
+ u 2
u
2
+ u
a
5
=
u
5
2u
4
+ 3u
3
+ 6u
2
2u 3
u
4
+ 2u
3
u 1
a
10
=
u
5
+ 2u
4
3u
3
5u
2
+ 4u + 3
2u + 1
a
4
=
u
5
2u
4
+ 3u
3
+ 6u
2
2u 3
u
4
+ 2u
3
u 1
a
12
=
u
5
3u
4
+ 5u
2
+ u 2
u
2
+ 2u
a
8
=
u
5
+ 3u
4
5u
2
u + 2
u
2
u
a
11
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
5
10u
4
8u
3
+ 14u
2
+ 7u + 1
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
u
6
c
5
(u
3
u
2
+ 1)
2
c
6
, c
7
u
6
+ 3u
5
5u
3
u
2
+ 2u + 1
c
8
(u + 1)
6
c
9
, c
10
u
6
+ 2u
5
+ 4u
4
+ 5u
3
+ 4u
2
+ 2u + 1
c
11
, c
12
(u 1)
6
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
(y
3
y
2
+ 2y 1)
2
c
4
y
6
c
6
, c
7
y
6
9y
5
+ 28y
4
35y
3
+ 21y
2
6y + 1
c
8
, c
11
, c
12
(y 1)
6
c
9
, c
10
y
6
+ 4y
5
+ 4y
4
+ y
3
+ 4y
2
+ 4y + 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.897438 + 0.201182I
a = 0.347054 + 0.067998I
b = 0.877439 0.744862I
4.66906 + 2.82812I 7.93937 4.05868I
u = 0.897438 0.201182I
a = 0.347054 0.067998I
b = 0.877439 + 0.744862I
4.66906 2.82812I 7.93937 + 4.05868I
u = 0.500000 + 0.273346I
a = 1.82472 1.95694I
b = 0.754878
0.531480 0.40089 2.50363I
u = 0.500000 0.273346I
a = 1.82472 + 1.95694I
b = 0.754878
0.531480 0.40089 + 2.50363I
u = 1.89744 + 0.20118I
a = 0.022336 1.056560I
b = 0.877439 + 0.744862I
4.66906 2.82812I 13.15973 + 2.26538I
u = 1.89744 0.20118I
a = 0.022336 + 1.056560I
b = 0.877439 0.744862I
4.66906 + 2.82812I 13.15973 2.26538I
21
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
3
u
2
+ 2u 1)
2
)(u
13
7u
12
+ ··· + 7u 1)
· (u
73
+ 40u
72
+ ··· + 26772u + 121)
c
2
((u
3
+ u
2
1)
2
)(u
13
u
12
+ ··· u 1)(u
73
+ 2u
72
+ ··· + 146u 11)
c
3
((u
3
u
2
+ 2u 1)
2
)(u
13
+ 2u
12
+ ··· 4u 1)
· (u
73
+ 3u
72
+ ··· + 31u 1)
c
4
u
6
(u
13
+ 4u
11
+ ··· + 317u 19)(u
73
+ 7u
72
+ ··· 96u + 64)
c
5
((u
3
u
2
+ 1)
2
)(u
13
+ u
12
+ ··· u + 1)(u
73
+ 2u
72
+ ··· + 146u 11)
c
6
(u
6
+ 3u
5
5u
3
u
2
+ 2u + 1)(u
13
+ u
11
+ ··· + 2u
2
+ 1)
· (u
73
6u
72
+ ··· 18561u 1133)
c
7
(u
6
+ 3u
5
5u
3
u
2
+ 2u + 1)(u
13
+ u
12
+ ··· + 5u + 1)
· (u
73
3u
72
+ ··· 12u 1)
c
8
((u + 1)
6
)(u
13
8u
12
+ ··· 4u + 1)(u
73
u
72
+ ··· 11u 1)
c
9
(u
6
+ 2u
5
+ 4u
4
+ 5u
3
+ 4u
2
+ 2u + 1)
· (u
13
+ 4u
11
+ 5u
9
+ u
8
+ 2u
7
+ 3u
6
u
5
+ 3u
4
2u
3
+ 2u
2
+ 1)
· (u
73
u
72
+ ··· 11u 19)
c
10
(u
6
+ 2u
5
+ 4u
4
+ 5u
3
+ 4u
2
+ 2u + 1)
· (u
13
+ 2u
11
2u
10
+ 3u
9
u
8
+ 3u
7
+ 2u
6
+ u
5
+ 5u
4
+ 4u
2
+ 1)
· (u
73
+ 3u
72
+ ··· 23u 1)
c
11
, c
12
((u 1)
6
)(u
13
+ 8u
12
+ ··· 4u 1)(u
73
u
72
+ ··· 11u 1)
22
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
3
+ 3y
2
+ 2y 1)
2
)(y
13
+ y
12
+ ··· 5y 1)
· (y
73
8y
72
+ ··· + 632441220y 14641)
c
2
, c
5
((y
3
y
2
+ 2y 1)
2
)(y
13
7y
12
+ ··· + 7y 1)
· (y
73
40y
72
+ ··· + 26772y 121)
c
3
((y
3
+ 3y
2
+ 2y 1)
2
)(y
13
14y
12
+ ··· + 20y 1)
· (y
73
71y
72
+ ··· 323y 1)
c
4
y
6
(y
13
+ 8y
12
+ ··· + 106151y 361)
· (y
73
+ 29y
72
+ ··· 1084416y 4096)
c
6
(y
6
9y
5
+ ··· 6y + 1)(y
13
+ 2y
12
+ ··· 4y 1)
· (y
73
34y
72
+ ··· + 64177063y 1283689)
c
7
(y
6
9y
5
+ ··· 6y + 1)(y
13
7y
12
+ ··· + 9y 1)
· (y
73
19y
72
+ ··· + 32y 1)
c
8
, c
11
, c
12
((y 1)
6
)(y
13
12y
12
+ ··· 4y 1)(y
73
17y
72
+ ··· 37y 1)
c
9
(y
6
+ 4y
5
+ 4y
4
+ y
3
+ 4y
2
+ 4y + 1)(y
13
+ 8y
12
+ ··· 4y 1)
· (y
73
+ 21y
72
+ ··· 26327y 361)
c
10
(y
6
+ 4y
5
+ 4y
4
+ y
3
+ 4y
2
+ 4y + 1)(y
13
+ 4y
12
+ ··· 8y 1)
· (y
73
+ 53y
72
+ ··· + 217y 1)
23