10
156
(K10n
32
)
A knot diagram
1
Linearized knot diagam
7 5 8 10 8 1 4 5 3 2
Solving Sequence
3,8 4,5
6 9 10 2 7 1
c
3
c
5
c
8
c
9
c
2
c
7
c
1
c
4
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−4u
9
2u
8
u
7
+ 9u
6
29u
5
u
4
+ 13u
3
+ 51u
2
+ 27b 19u + 8,
11u
9
+ 8u
8
+ 4u
7
9u
6
46u
5
+ 31u
4
+ 29u
3
+ 12u
2
+ 27a 32u 5, u
10
+ u
7
+ 5u
6
u
3
+ u
2
u + 1i
I
u
2
= hu
2
+ b + 1, u
3
+ a + 2u + 1, u
5
+ 2u
3
+ u
2
+ 1i
I
u
3
= h−3646u
11
+ 4692u
10
+ ··· + 3395b + 12871, 24747u
11
25539u
10
+ ··· + 16975a 130862,
u
12
u
11
+ 2u
10
3u
9
+ 6u
8
3u
7
+ 9u
6
5u
5
2u
4
8u
2
6u 1i
* 3 irreducible components of dim
C
= 0, with total 27 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−4u
9
2u
8
+ · · · + 27b + 8, 11u
9
+ 8u
8
+ · · · + 27a 5, u
10
+
u
7
+ 5u
6
u
3
+ u
2
u + 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
5
=
0.407407u
9
0.296296u
8
+ ··· + 1.18519u + 0.185185
0.148148u
9
+ 0.0740741u
8
+ ··· + 0.703704u 0.296296
a
6
=
0.407407u
9
0.296296u
8
+ ··· + 1.18519u + 0.185185
0.296296u
9
+ 0.148148u
8
+ ··· + 1.40741u 0.592593
a
9
=
0.518519u
9
0.259259u
8
+ ··· 0.962963u + 0.0370370
0.296296u
9
0.148148u
8
+ ··· + 0.592593u 0.407407
a
10
=
0.814815u
9
0.407407u
8
+ ··· 0.370370u 0.370370
0.296296u
9
0.148148u
8
+ ··· + 0.592593u 0.407407
a
2
=
0.407407u
9
0.296296u
8
+ ··· + 1.18519u + 0.185185
1
9
u
9
+
5
9
u
8
+ ··· +
7
9
u
2
9
a
7
=
u
u
3
+ u
a
1
=
u
0.370370u
9
+ 0.185185u
8
+ ··· + 0.259259u + 0.259259
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
23
9
u
9
25
9
u
8
+
10
9
u
7
3u
6
133
9
u
5
116
9
u
4
+
41
9
u
3
+
1
3
u
2
+
19
9
u +
28
9
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
10
4u
9
+ 6u
8
12u
6
+ 15u
5
+ u
4
21u
3
+ 25u
2
14u + 4
c
2
u
10
+ 6u
9
+ 14u
8
+ 18u
7
+ 22u
6
+ 31u
5
+ 26u
4
+ 7u
3
+ 4u
2
+ 12u + 8
c
3
, c
4
, c
7
u
10
+ u
7
+ 5u
6
u
3
+ u
2
u + 1
c
5
, c
8
, c
9
u
10
+ 2u
9
7u
8
18u
7
+ 9u
6
+ 46u
5
+ 25u
4
13u
3
10u
2
+ u + 1
c
10
u
10
+ 4u
9
+ ··· 4u + 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
10
4y
9
+ ··· + 4y + 16
c
2
y
10
8y
9
+ ··· 80y + 64
c
3
, c
4
, c
7
y
10
+ 10y
8
y
7
+ 27y
6
+ 4y
5
+ 12y
4
+ 9y
3
y
2
+ y + 1
c
5
, c
8
, c
9
y
10
18y
9
+ ··· 21y + 1
c
10
y
10
+ 8y
9
+ ··· + 1424y + 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.723110 + 0.623649I
a = 0.401950 + 0.330159I
b = 0.485574 + 1.220240I
0.90131 5.21099I 4.11400 + 8.12783I
u = 0.723110 0.623649I
a = 0.401950 0.330159I
b = 0.485574 1.220240I
0.90131 + 5.21099I 4.11400 8.12783I
u = 0.067084 + 0.694939I
a = 0.43471 + 1.53803I
b = 0.829826 + 0.602084I
1.96302 + 2.37863I 1.27520 1.22709I
u = 0.067084 0.694939I
a = 0.43471 1.53803I
b = 0.829826 0.602084I
1.96302 2.37863I 1.27520 + 1.22709I
u = 0.630715 + 0.297914I
a = 0.574400 0.195586I
b = 0.560066 0.531210I
1.185420 + 0.648518I 7.38806 2.73057I
u = 0.630715 0.297914I
a = 0.574400 + 0.195586I
b = 0.560066 + 0.531210I
1.185420 0.648518I 7.38806 + 2.73057I
u = 1.034740 + 0.876758I
a = 1.31917 0.80288I
b = 1.55315 0.33666I
7.82103 4.41044I 6.40190 + 3.03613I
u = 1.034740 0.876758I
a = 1.31917 + 0.80288I
b = 1.55315 + 0.33666I
7.82103 + 4.41044I 6.40190 3.03613I
u = 1.06005 + 1.17909I
a = 1.091890 + 0.674915I
b = 1.66266 + 0.40960I
6.19490 + 11.16340I 4.37125 6.32339I
u = 1.06005 1.17909I
a = 1.091890 0.674915I
b = 1.66266 0.40960I
6.19490 11.16340I 4.37125 + 6.32339I
5
II. I
u
2
= hu
2
+ b + 1, u
3
+ a + 2u + 1, u
5
+ 2u
3
+ u
2
+ 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
5
=
u
3
2u 1
u
2
1
a
6
=
u
3
2u 1
u
2
2
a
9
=
u
4
+ u
2
+ u 2
u
4
+ 2u
2
+ u
a
10
=
2u
4
+ 3u
2
+ 2u 2
u
4
+ 2u
2
+ u
a
2
=
u
3
+ 2u + 1
u
4
+ 2u
2
+ 1
a
7
=
u
u
3
+ u
a
1
=
u
u
4
+ 2u
2
+ u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
4
8u
3
u
2
13u 2
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
+ u
4
u
3
2u
2
+ u + 1
c
2
u
5
+ u
4
2u
3
u
2
+ u + 1
c
3
u
5
+ 2u
3
+ u
2
+ 1
c
4
, c
7
u
5
+ 2u
3
u
2
1
c
5
, c
9
u
5
+ u
3
+ 2u
2
+ 1
c
6
u
5
u
4
u
3
+ 2u
2
+ u 1
c
8
u
5
+ u
3
2u
2
1
c
10
u
5
3u
4
+ 7u
3
8u
2
+ 5u 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
5
3y
4
+ 7y
3
8y
2
+ 5y 1
c
2
y
5
5y
4
+ 8y
3
7y
2
+ 3y 1
c
3
, c
4
, c
7
y
5
+ 4y
4
+ 4y
3
y
2
2y 1
c
5
, c
8
, c
9
y
5
+ 2y
4
+ y
3
4y
2
4y 1
c
10
y
5
+ 5y
4
+ 11y
3
+ 9y 1
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.859460
a = 1.35378
b = 1.73867
3.55538 12.9680
u = 0.300574 + 0.700535I
a = 1.18578 1.24715I
b = 0.599596 0.421125I
1.84330 + 3.45949I 2.16713 7.95950I
u = 0.300574 0.700535I
a = 1.18578 + 1.24715I
b = 0.599596 + 0.421125I
1.84330 3.45949I 2.16713 + 7.95950I
u = 0.12916 + 1.40912I
a = 0.491105 0.090789I
b = 0.968932 0.363992I
4.86920 1.42206I 0.68335 + 4.57040I
u = 0.12916 1.40912I
a = 0.491105 + 0.090789I
b = 0.968932 + 0.363992I
4.86920 + 1.42206I 0.68335 4.57040I
9
III. I
u
3
= h−3646u
11
+ 4692u
10
+ · · · + 3395b + 12871, 24747u
11
25539u
10
+ · · · + 16975a 130862, u
12
u
11
+ · · · 6u 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
5
=
1.45785u
11
+ 1.50451u
10
+ ··· + 14.1214u + 7.70910
1.07393u
11
1.38203u
10
+ ··· 8.88218u 3.79116
a
6
=
1.45785u
11
+ 1.50451u
10
+ ··· + 14.1214u + 7.70910
0.867570u
11
1.01290u
10
+ ··· 7.70427u 3.83782
a
9
=
3.86074u
11
5.29791u
10
+ ··· 30.9502u 11.2213
1.06957u
11
+ 1.43281u
10
+ ··· + 8.75287u + 3.35647
a
10
=
2.79116u
11
3.86510u
10
+ ··· 22.1973u 7.86480
1.06957u
11
+ 1.43281u
10
+ ··· + 8.75287u + 3.35647
a
2
=
3.35647u
11
4.42604u
10
+ ··· 25.6789u 11.3859
1.07393u
11
+ 1.38203u
10
+ ··· + 8.88218u + 4.79116
a
7
=
u
u
3
+ u
a
1
=
3.74451u
11
5.02480u
10
+ ··· 29.1594u 12.4070
1.56960u
11
+ 1.99193u
10
+ ··· + 13.2389u + 6.02292
(ii) Obstruction class = 1
(iii) Cusp Shapes =
9904
2425
u
11
13668
2425
u
10
+
25616
2425
u
9
40328
2425
u
8
+
74912
2425
u
7
59884
2425
u
6
+
22984
485
u
5
3816
97
u
4
+
18152
2425
u
3
12692
2425
u
2
15928
485
u
20814
2425
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
(u
3
+ u
2
1)
4
c
2
(u
2
u 1)
6
c
3
, c
4
, c
7
u
12
u
11
+ 2u
10
3u
9
+ 6u
8
3u
7
+ 9u
6
5u
5
2u
4
8u
2
6u 1
c
5
, c
8
, c
9
u
12
+ u
11
+ ··· 46u 19
c
10
(u
3
+ u
2
+ 2u + 1)
4
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
3
y
2
+ 2y 1)
4
c
2
(y
2
3y + 1)
6
c
3
, c
4
, c
7
y
12
+ 3y
11
+ ··· 20y + 1
c
5
, c
8
, c
9
y
12
9y
11
+ ··· + 240y + 361
c
10
(y
3
+ 3y
2
+ 2y 1)
4
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.384581 + 0.967717I
a = 0.472201 + 0.655526I
b = 0.618034
0.92371 + 2.82812I 5.50976 2.97945I
u = 0.384581 0.967717I
a = 0.472201 0.655526I
b = 0.618034
0.92371 2.82812I 5.50976 + 2.97945I
u = 1.17224
a = 1.13192
b = 1.61803
2.83439 1.01950
u = 0.176090 + 1.382660I
a = 0.566384 + 0.405556I
b = 0.618034
5.06130 6 1.019511 + 0.10I
u = 0.176090 1.382660I
a = 0.566384 0.405556I
b = 0.618034
5.06130 6 1.019511 + 0.10I
u = 0.517507 + 0.159859I
a = 0.95090 + 2.42302I
b = 0.618034
0.92371 2.82812I 5.50976 + 2.97945I
u = 0.517507 0.159859I
a = 0.95090 2.42302I
b = 0.618034
0.92371 + 2.82812I 5.50976 2.97945I
u = 0.92154 + 1.14616I
a = 1.017000 + 0.670899I
b = 1.61803
6.97197 2.82812I 5.50976 + 2.97945I
u = 0.92154 1.14616I
a = 1.017000 0.670899I
b = 1.61803
6.97197 + 2.82812I 5.50976 2.97945I
u = 1.26955 + 0.96884I
a = 1.014420 0.568969I
b = 1.61803
6.97197 2.82812I 5.50976 + 2.97945I
13
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.26955 0.96884I
a = 1.014420 + 0.568969I
b = 1.61803
6.97197 + 2.82812I 5.50976 2.97945I
u = 0.250219
a = 3.89540
b = 1.61803
2.83439 1.01950
14
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
1)
4
(u
5
+ u
4
u
3
2u
2
+ u + 1)
· (u
10
4u
9
+ 6u
8
12u
6
+ 15u
5
+ u
4
21u
3
+ 25u
2
14u + 4)
c
2
(u
2
u 1)
6
(u
5
+ u
4
2u
3
u
2
+ u + 1)
· (u
10
+ 6u
9
+ 14u
8
+ 18u
7
+ 22u
6
+ 31u
5
+ 26u
4
+ 7u
3
+ 4u
2
+ 12u + 8)
c
3
(u
5
+ 2u
3
+ u
2
+ 1)(u
10
+ u
7
+ 5u
6
u
3
+ u
2
u + 1)
· (u
12
u
11
+ 2u
10
3u
9
+ 6u
8
3u
7
+ 9u
6
5u
5
2u
4
8u
2
6u 1)
c
4
, c
7
(u
5
+ 2u
3
u
2
1)(u
10
+ u
7
+ 5u
6
u
3
+ u
2
u + 1)
· (u
12
u
11
+ 2u
10
3u
9
+ 6u
8
3u
7
+ 9u
6
5u
5
2u
4
8u
2
6u 1)
c
5
, c
9
(u
5
+ u
3
+ 2u
2
+ 1)
· (u
10
+ 2u
9
7u
8
18u
7
+ 9u
6
+ 46u
5
+ 25u
4
13u
3
10u
2
+ u + 1)
· (u
12
+ u
11
+ ··· 46u 19)
c
6
(u
3
+ u
2
1)
4
(u
5
u
4
u
3
+ 2u
2
+ u 1)
· (u
10
4u
9
+ 6u
8
12u
6
+ 15u
5
+ u
4
21u
3
+ 25u
2
14u + 4)
c
8
(u
5
+ u
3
2u
2
1)
· (u
10
+ 2u
9
7u
8
18u
7
+ 9u
6
+ 46u
5
+ 25u
4
13u
3
10u
2
+ u + 1)
· (u
12
+ u
11
+ ··· 46u 19)
c
10
(u
3
+ u
2
+ 2u + 1)
4
(u
5
3u
4
+ 7u
3
8u
2
+ 5u 1)
· (u
10
+ 4u
9
+ ··· 4u + 16)
15
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
3
y
2
+ 2y 1)
4
(y
5
3y
4
+ 7y
3
8y
2
+ 5y 1)
· (y
10
4y
9
+ ··· + 4y + 16)
c
2
(y
2
3y + 1)
6
(y
5
5y
4
+ 8y
3
7y
2
+ 3y 1)
· (y
10
8y
9
+ ··· 80y + 64)
c
3
, c
4
, c
7
(y
5
+ 4y
4
+ 4y
3
y
2
2y 1)
· (y
10
+ 10y
8
y
7
+ 27y
6
+ 4y
5
+ 12y
4
+ 9y
3
y
2
+ y + 1)
· (y
12
+ 3y
11
+ ··· 20y + 1)
c
5
, c
8
, c
9
(y
5
+ 2y
4
+ y
3
4y
2
4y 1)(y
10
18y
9
+ ··· 21y + 1)
· (y
12
9y
11
+ ··· + 240y + 361)
c
10
(y
3
+ 3y
2
+ 2y 1)
4
(y
5
+ 5y
4
+ 11y
3
+ 9y 1)
· (y
10
+ 8y
9
+ ··· + 1424y + 256)
16