12n
0321
(K12n
0321
)
A knot diagram
1
Linearized knot diagam
3 6 12 7 2 10 3 1 12 5 7 9
Solving Sequence
3,6
2 1
5,9
8 7 4 12 10 11
c
2
c
1
c
5
c
8
c
7
c
4
c
12
c
9
c
10
c
3
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−28u
8
+ 32u
7
37u
6
26u
5
112u
4
40u
3
37u
2
+ 59b + 86u 72,
7u
8
+ 8u
7
24u
6
+ 23u
5
28u
4
69u
3
24u
2
+ 59a + 110u 18,
u
9
2u
8
+ 2u
7
+ u
6
+ 2u
5
2u
4
+ u
3
3u
2
+ 4u 1i
I
u
2
= h−u
2
+ b u + 2, a + 1, u
4
+ u
3
u
2
u + 1i
I
u
3
= h−2u
7
3u
6
2u
5
+ 4u
4
+ 7u
3
+ 5u
2
+ b 5u 5, 2u
7
2u
6
u
5
+ 5u
4
+ 5u
3
+ 3u
2
+ a 6u 2,
u
8
+ 2u
7
+ 2u
6
u
5
4u
4
4u
3
+ u
2
+ 3u + 1i
I
u
4
= h−3u
5
+ u
3
11u
2
+ 19b + 7u 18, 9u
5
+ 19u
4
35u
3
+ 43u
2
+ 19a 74u + 22,
u
6
3u
5
+ 6u
4
8u
3
+ 12u
2
6u + 1i
I
u
5
= hb, a + u + 1, u
2
+ u + 1i
* 5 irreducible components of dim
C
= 0, with total 29 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−28u
8
+32u
7
+· · ·+59b 72, 7u
8
+8u
7
+· · ·+59a 18, u
9
2u
8
+· · ·+4u 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
9
=
0.118644u
8
0.135593u
7
+ ··· 1.86441u + 0.305085
0.474576u
8
0.542373u
7
+ ··· 1.45763u + 1.22034
a
8
=
0.355932u
8
0.406780u
7
+ ··· 1.59322u + 0.915254
0.355932u
8
0.406780u
7
+ ··· 0.593220u + 0.915254
a
7
=
u
0.355932u
8
0.406780u
7
+ ··· 0.593220u + 0.915254
a
4
=
0.118644u
8
+ 0.135593u
7
+ ··· + 1.86441u 0.305085
0.440678u
8
0.932203u
7
+ ··· 1.06780u + 0.847458
a
12
=
0.389831u
8
1.01695u
7
+ ··· 0.983051u + 1.28814
0.355932u
8
+ 0.406780u
7
+ ··· + 0.593220u 0.915254
a
10
=
1
0.915254u
8
1.47458u
7
+ ··· 2.52542u + 2.06780
a
11
=
0.305085u
8
+ 0.491525u
7
+ ··· + 0.508475u 1.35593
0.711864u
8
0.813559u
7
+ ··· 2.18644u + 1.83051
(ii) Obstruction class = 1
(iii) Cusp Shapes =
15
59
u
8
+
93
59
u
7
43
59
u
6
94
59
u
5
+
235
59
u
4
+
282
59
u
3
+
193
59
u
2
93
59
u
342
59
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
9
+ 12u
7
u
6
+ 8u
5
18u
4
+ 7u
3
+ 5u
2
+ 10u + 1
c
2
, c
5
, c
6
u
9
+ 2u
8
+ 2u
7
u
6
+ 2u
5
+ 2u
4
+ u
3
+ 3u
2
+ 4u + 1
c
3
, c
8
, c
9
c
10
, c
12
u
9
+ 7u
7
+ 5u
6
+ 15u
5
+ 13u
4
+ 11u
3
+ 7u
2
+ u + 1
c
4
u
9
+ 2u
8
7u
7
15u
6
+ 13u
5
+ 53u
4
+ 71u
3
+ 61u
2
+ 29u + 5
c
7
u
9
7u
8
+ 5u
7
+ 42u
6
+ 92u
5
+ 125u
4
+ 125u
3
+ 88u
2
+ 39u + 9
c
11
u
9
+ u
8
+ 14u
7
+ 10u
6
+ 39u
5
44u
4
45u
3
+ 4u
2
+ 20u + 9
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
9
+ 24y
8
+ ··· + 90y 1
c
2
, c
5
, c
6
y
9
+ 12y
7
+ y
6
+ 8y
5
+ 18y
4
+ 7y
3
5y
2
+ 10y 1
c
3
, c
8
, c
9
c
10
, c
12
y
9
+ 14y
8
+ 79y
7
+ 207y
6
+ 251y
5
+ 105y
4
41y
3
53y
2
13y 1
c
4
y
9
18y
8
+ ··· + 231y 25
c
7
y
9
39y
8
+ ··· 63y 81
c
11
y
9
+ 27y
8
+ ··· + 328y 81
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.236649 + 0.987655I
a = 1.59024 3.04254I
b = 1.32330 0.67194I
9.89350 + 2.31667I 0.86831 3.48815I
u = 0.236649 0.987655I
a = 1.59024 + 3.04254I
b = 1.32330 + 0.67194I
9.89350 2.31667I 0.86831 + 3.48815I
u = 0.948444 + 0.610151I
a = 0.291757 + 0.057514I
b = 0.400025 0.194724I
1.50288 + 4.69117I 4.69492 7.49384I
u = 0.948444 0.610151I
a = 0.291757 0.057514I
b = 0.400025 + 0.194724I
1.50288 4.69117I 4.69492 + 7.49384I
u = 0.731097 + 0.406841I
a = 0.967602 + 0.291558I
b = 0.297854 + 1.104540I
1.11949 1.41007I 6.06702 + 5.32264I
u = 0.731097 0.406841I
a = 0.967602 0.291558I
b = 0.297854 1.104540I
1.11949 + 1.41007I 6.06702 5.32264I
u = 0.323158
a = 0.211236
b = 0.860492
1.09696 5.76550
u = 1.29242 + 1.30359I
a = 1.69122 + 1.25994I
b = 2.44434 + 0.36799I
13.8407 9.8067I 4.22361 + 3.66185I
u = 1.29242 1.30359I
a = 1.69122 1.25994I
b = 2.44434 0.36799I
13.8407 + 9.8067I 4.22361 3.66185I
5
II. I
u
2
= h−u
2
+ b u + 2, a + 1, u
4
+ u
3
u
2
u + 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
9
=
1
u
2
+ u 2
a
8
=
u
3
+ u
2
u 1
u
3
+ u
2
1
a
7
=
u
u
3
+ u
2
1
a
4
=
1
u
3
u
2
+ u
a
12
=
0
u
2
1
a
10
=
1
u
3
+ 2u
2
2
a
11
=
u
3
+ u 1
u
3
+ 2u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
3
+ 5u
2
3u 13
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
3u
3
+ 5u
2
3u + 1
c
2
, c
6
u
4
+ u
3
u
2
u + 1
c
3
, c
12
u
4
+ u
3
+ 2u
2
+ 2u + 1
c
4
u
4
3u
3
+ 2u
2
+ 1
c
5
u
4
u
3
u
2
+ u + 1
c
7
(u
2
u + 1)
2
c
8
, c
9
, c
10
u
4
u
3
+ 2u
2
2u + 1
c
11
u
4
+ 2u
2
+ 3u + 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
4
+ y
3
+ 9y
2
+ y + 1
c
2
, c
5
, c
6
y
4
3y
3
+ 5y
2
3y + 1
c
3
, c
8
, c
9
c
10
, c
12
y
4
+ 3y
3
+ 2y
2
+ 1
c
4
y
4
5y
3
+ 6y
2
+ 4y + 1
c
7
(y
2
+ y + 1)
2
c
11
y
4
+ 4y
3
+ 6y
2
5y + 1
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.692440 + 0.318148I
a = 1.00000
b = 0.929304 + 0.758745I
1.74699 0.56550I 12.94255 + 2.09940I
u = 0.692440 0.318148I
a = 1.00000
b = 0.929304 0.758745I
1.74699 + 0.56550I 12.94255 2.09940I
u = 1.192440 + 0.547877I
a = 1.00000
b = 2.07070 0.75874I
5.03685 + 4.62527I 5.05745 3.83145I
u = 1.192440 0.547877I
a = 1.00000
b = 2.07070 + 0.75874I
5.03685 4.62527I 5.05745 + 3.83145I
9
III. I
u
3
= h−2u
7
3u
6
+ · · · + b 5, 2u
7
2u
6
+ · · · + a 2, u
8
+ 2u
7
+
2u
6
u
5
4u
4
4u
3
+ u
2
+ 3u + 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
9
=
2u
7
+ 2u
6
+ u
5
5u
4
5u
3
3u
2
+ 6u + 2
2u
7
+ 3u
6
+ 2u
5
4u
4
7u
3
5u
2
+ 5u + 5
a
8
=
4u
7
+ 5u
6
+ 4u
5
8u
4
12u
3
9u
2
+ 11u + 6
u
7
+ 2u
6
+ 2u
5
u
4
4u
3
4u
2
+ 2u + 3
a
7
=
3u
7
+ 3u
6
+ 2u
5
7u
4
8u
3
5u
2
+ 9u + 3
u
7
+ 2u
6
+ 2u
5
u
4
4u
3
4u
2
+ 2u + 3
a
4
=
10u
7
13u
6
11u
5
+ 17u
4
+ 27u
3
+ 20u
2
23u 12
u
7
2u
6
2u
5
+ u
4
+ 4u
3
+ 4u
2
u 4
a
12
=
6u
7
+ 9u
6
+ 7u
5
11u
4
20u
3
14u
2
+ 15u + 13
5u
7
7u
6
6u
5
+ 8u
4
+ 15u
3
+ 11u
2
11u 8
a
10
=
7u
7
10u
6
8u
5
+ 12u
4
+ 22u
3
+ 16u
2
16u 12
3u
7
+ 4u
6
+ 3u
5
6u
4
9u
3
6u
2
+ 8u + 5
a
11
=
10u
7
14u
6
11u
5
+ 17u
4
+ 31u
3
+ 22u
2
23u 17
u
7
+ 2u
6
+ u
5
3u
4
4u
3
2u
2
+ 4u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
7
+ 3u
6
+ 3u
5
2u
4
5u
3
4u
2
+ 3u 2
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
+ u
5
+ 2u
4
14u
3
+ 17u
2
7u + 1
c
2
, c
6
u
8
+ 2u
7
+ 2u
6
u
5
4u
4
4u
3
+ u
2
+ 3u + 1
c
3
, c
12
u
8
u
7
+ 6u
6
5u
5
+ 12u
4
8u
3
+ 9u
2
4u + 1
c
4
(u
4
+ 3u
3
+ u
2
2u + 1)
2
c
5
u
8
2u
7
+ 2u
6
+ u
5
4u
4
+ 4u
3
+ u
2
3u + 1
c
7
u
8
+ u
7
+ 5u
6
+ 8u
5
+ 7u
4
+ 11u
3
+ 10u
2
+ 1
c
8
, c
9
, c
10
u
8
+ u
7
+ 6u
6
+ 5u
5
+ 12u
4
+ 8u
3
+ 9u
2
+ 4u + 1
c
11
u
8
2u
7
+ 5u
6
+ 3u
5
+ 4u
4
+ 27u
3
3u
2
16u + 52
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
+ 4y
6
+ 33y
5
+ 34y
4
114y
3
+ 97y
2
15y + 1
c
2
, c
5
, c
6
y
8
+ y
5
+ 2y
4
14y
3
+ 17y
2
7y + 1
c
3
, c
8
, c
9
c
10
, c
12
y
8
+ 11y
7
+ 50y
6
+ 121y
5
+ 166y
4
+ 124y
3
+ 41y
2
+ 2y + 1
c
4
(y
4
7y
3
+ 15y
2
2y + 1)
2
c
7
y
8
+ 9y
7
+ 23y
6
+ 4y
5
25y
4
+ 29y
3
+ 114y
2
+ 20y + 1
c
11
y
8
+ 6y
7
+ 45y
6
+ 133y
5
136y
4
137y
3
+ 1289y
2
568y + 2704
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.963269 + 0.149069I
a = 0.307661 1.178810I
b = 0.148192 0.911292I
1.43393 3.16396I 4.10488 + 1.55249I
u = 0.963269 0.149069I
a = 0.307661 + 1.178810I
b = 0.148192 + 0.911292I
1.43393 + 3.16396I 4.10488 1.55249I
u = 1.006590 + 0.790269I
a = 0.550701 + 0.903791I
b = 0.148192 + 0.911292I
1.43393 + 3.16396I 4.10488 1.55249I
u = 1.006590 0.790269I
a = 0.550701 0.903791I
b = 0.148192 0.911292I
1.43393 3.16396I 4.10488 + 1.55249I
u = 0.384833 + 1.326500I
a = 1.24719 2.12175I
b = 1.35181 0.72034I
8.43568 + 1.41510I 4.39512 0.50684I
u = 0.384833 1.326500I
a = 1.24719 + 2.12175I
b = 1.35181 + 0.72034I
8.43568 1.41510I 4.39512 + 0.50684I
u = 0.571852 + 0.099314I
a = 1.99023 + 0.84034I
b = 1.35181 + 0.72034I
8.43568 1.41510I 4.39512 + 0.50684I
u = 0.571852 0.099314I
a = 1.99023 0.84034I
b = 1.35181 0.72034I
8.43568 + 1.41510I 4.39512 0.50684I
13
IV. I
u
4
= h−3u
5
+ u
3
11u
2
+ 19b + 7u 18, 9u
5
+ 19u
4
+ · · · + 19a +
22, u
6
3u
5
+ 6u
4
8u
3
+ 12u
2
6u + 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
9
=
9
19
u
5
u
4
+ ··· +
74
19
u
22
19
0.157895u
5
0.0526316u
3
+ ··· 0.368421u + 0.947368
a
8
=
9
19
u
5
2u
4
+ ··· +
55
19
u
3
19
3
19
u
5
u
4
+ ···
7
19
u +
18
19
a
7
=
6
19
u
5
u
4
+ ··· +
62
19
u
21
19
3
19
u
5
u
4
+ ···
7
19
u +
18
19
a
4
=
8
19
u
5
u
4
+ ··· +
51
19
u
9
19
11
19
u
5
u
4
+ ··· +
6
19
u +
9
19
a
12
=
6
19
u
5
+ u
4
+ ···
81
19
u +
40
19
0.105263u
5
+ 0.368421u
3
+ ··· 0.421053u 0.631579
a
10
=
0.684211u
5
2u
4
+ ··· + 7.73684u 2.89474
0.105263u
5
+ 0.368421u
3
+ ··· + 0.578947u + 1.36842
a
11
=
7
19
u
5
u
4
+ ··· +
123
19
u
53
19
1.57895u
5
+ 3u
4
+ ··· 1.31579u + 1.52632
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2
19
u
5
+
7
19
u
3
20
19
u
2
+
11
19
u
107
19
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
3u
5
+ 12u
4
46u
3
+ 60u
2
+ 12u + 1
c
2
, c
5
, c
6
u
6
+ 3u
5
+ 6u
4
+ 8u
3
+ 12u
2
+ 6u + 1
c
3
, c
8
, c
9
c
10
, c
12
u
6
+ 9u
4
+ 8u
3
+ 27u
2
+ 45u + 19
c
4
(u
3
3u 1)
2
c
7
u
6
+ 9u
5
+ 48u
4
+ 349u
3
+ 1647u
2
+ 2058u + 757
c
11
u
6
+ 9u
4
9u
3
+ 54u
2
+ 81u + 27
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
6
+ 15y
5
12y
4
602y
3
+ 4728y
2
24y + 1
c
2
, c
5
, c
6
y
6
+ 3y
5
+ 12y
4
+ 46y
3
+ 60y
2
12y + 1
c
3
, c
8
, c
9
c
10
, c
12
y
6
+ 18y
5
+ 135y
4
+ 460y
3
+ 351y
2
999y + 361
c
4
(y
3
6y
2
+ 9y 1)
2
c
7
y
6
+ 15y
5
684y
4
+ 781y
3
+ 1348797y
2
1741806y + 573049
c
11
y
6
+ 18y
5
+ 189y
4
+ 945y
3
+ 4860y
2
3645y + 729
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.26604 + 1.50881I
a = 1.17365 + 0.98481I
b = 1.34730
12.0628 2.12061 + 0.I
u = 0.26604 1.50881I
a = 1.17365 0.98481I
b = 1.34730
12.0628 2.12061 + 0.I
u = 0.326352 + 0.118782I
a = 0.060307 + 0.342020I
b = 0.879385
1.09662 5.53209 + 0.I
u = 0.326352 0.118782I
a = 0.060307 0.342020I
b = 0.879385
1.09662 5.53209 + 0.I
u = 1.43969 + 1.20805I
a = 1.76604 0.64279I
b = 2.53209
14.2561 4.34730 + 0.I
u = 1.43969 1.20805I
a = 1.76604 + 0.64279I
b = 2.53209
14.2561 4.34730 + 0.I
17
V. I
u
5
= hb, a + u + 1, u
2
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u + 1
a
1
=
u + 2
u + 1
a
5
=
u
u 1
a
9
=
u 1
0
a
8
=
2
1
a
7
=
1
1
a
4
=
u + 1
u
a
12
=
u + 1
u + 1
a
10
=
u
1
a
11
=
u 1
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
8
c
9
, c
10
, c
12
u
2
u + 1
c
4
, c
7
(u 1)
2
c
11
u
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
8
c
9
, c
10
, c
12
y
2
+ y + 1
c
4
, c
7
(y 1)
2
c
11
y
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 0.866025I
b = 0
3.28987 3.00000
u = 0.500000 0.866025I
a = 0.500000 + 0.866025I
b = 0
3.28987 3.00000
21
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)(u
4
3u
3
+ 5u
2
3u + 1)
· (u
6
3u
5
+ 12u
4
46u
3
+ 60u
2
+ 12u + 1)
· (u
8
+ u
5
+ 2u
4
14u
3
+ 17u
2
7u + 1)
· (u
9
+ 12u
7
u
6
+ 8u
5
18u
4
+ 7u
3
+ 5u
2
+ 10u + 1)
c
2
, c
6
(u
2
u + 1)(u
4
+ u
3
u
2
u + 1)(u
6
+ 3u
5
+ ··· + 6u + 1)
· (u
8
+ 2u
7
+ 2u
6
u
5
4u
4
4u
3
+ u
2
+ 3u + 1)
· (u
9
+ 2u
8
+ 2u
7
u
6
+ 2u
5
+ 2u
4
+ u
3
+ 3u
2
+ 4u + 1)
c
3
, c
12
(u
2
u + 1)(u
4
+ u
3
+ 2u
2
+ 2u + 1)(u
6
+ 9u
4
+ ··· + 45u + 19)
· (u
8
u
7
+ 6u
6
5u
5
+ 12u
4
8u
3
+ 9u
2
4u + 1)
· (u
9
+ 7u
7
+ 5u
6
+ 15u
5
+ 13u
4
+ 11u
3
+ 7u
2
+ u + 1)
c
4
((u 1)
2
)(u
3
3u 1)
2
(u
4
3u
3
+ 2u
2
+ 1)(u
4
+ 3u
3
+ ··· 2u + 1)
2
· (u
9
+ 2u
8
7u
7
15u
6
+ 13u
5
+ 53u
4
+ 71u
3
+ 61u
2
+ 29u + 5)
c
5
(u
2
u + 1)(u
4
u
3
u
2
+ u + 1)(u
6
+ 3u
5
+ ··· + 6u + 1)
· (u
8
2u
7
+ 2u
6
+ u
5
4u
4
+ 4u
3
+ u
2
3u + 1)
· (u
9
+ 2u
8
+ 2u
7
u
6
+ 2u
5
+ 2u
4
+ u
3
+ 3u
2
+ 4u + 1)
c
7
(u 1)
2
(u
2
u + 1)
2
· (u
6
+ 9u
5
+ 48u
4
+ 349u
3
+ 1647u
2
+ 2058u + 757)
· (u
8
+ u
7
+ 5u
6
+ 8u
5
+ 7u
4
+ 11u
3
+ 10u
2
+ 1)
· (u
9
7u
8
+ 5u
7
+ 42u
6
+ 92u
5
+ 125u
4
+ 125u
3
+ 88u
2
+ 39u + 9)
c
8
, c
9
, c
10
(u
2
u + 1)(u
4
u
3
+ 2u
2
2u + 1)(u
6
+ 9u
4
+ ··· + 45u + 19)
· (u
8
+ u
7
+ 6u
6
+ 5u
5
+ 12u
4
+ 8u
3
+ 9u
2
+ 4u + 1)
· (u
9
+ 7u
7
+ 5u
6
+ 15u
5
+ 13u
4
+ 11u
3
+ 7u
2
+ u + 1)
c
11
u
2
(u
4
+ 2u
2
+ 3u + 1)(u
6
+ 9u
4
9u
3
+ 54u
2
+ 81u + 27)
· (u
8
2u
7
+ 5u
6
+ 3u
5
+ 4u
4
+ 27u
3
3u
2
16u + 52)
· (u
9
+ u
8
+ 14u
7
+ 10u
6
+ 39u
5
44u
4
45u
3
+ 4u
2
+ 20u + 9)
22
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)(y
4
+ y
3
+ 9y
2
+ y + 1)
· (y
6
+ 15y
5
12y
4
602y
3
+ 4728y
2
24y + 1)
· (y
8
+ 4y
6
+ 33y
5
+ 34y
4
114y
3
+ 97y
2
15y + 1)
· (y
9
+ 24y
8
+ ··· + 90y 1)
c
2
, c
5
, c
6
(y
2
+ y + 1)(y
4
3y
3
+ 5y
2
3y + 1)
· (y
6
+ 3y
5
+ 12y
4
+ 46y
3
+ 60y
2
12y + 1)
· (y
8
+ y
5
+ 2y
4
14y
3
+ 17y
2
7y + 1)
· (y
9
+ 12y
7
+ y
6
+ 8y
5
+ 18y
4
+ 7y
3
5y
2
+ 10y 1)
c
3
, c
8
, c
9
c
10
, c
12
(y
2
+ y + 1)(y
4
+ 3y
3
+ 2y
2
+ 1)
· (y
6
+ 18y
5
+ 135y
4
+ 460y
3
+ 351y
2
999y + 361)
· (y
8
+ 11y
7
+ 50y
6
+ 121y
5
+ 166y
4
+ 124y
3
+ 41y
2
+ 2y + 1)
· (y
9
+ 14y
8
+ 79y
7
+ 207y
6
+ 251y
5
+ 105y
4
41y
3
53y
2
13y 1)
c
4
(y 1)
2
(y
3
6y
2
+ 9y 1)
2
(y
4
7y
3
+ 15y
2
2y + 1)
2
· (y
4
5y
3
+ 6y
2
+ 4y + 1)(y
9
18y
8
+ ··· + 231y 25)
c
7
(y 1)
2
(y
2
+ y + 1)
2
· (y
6
+ 15y
5
684y
4
+ 781y
3
+ 1348797y
2
1741806y + 573049)
· (y
8
+ 9y
7
+ 23y
6
+ 4y
5
25y
4
+ 29y
3
+ 114y
2
+ 20y + 1)
· (y
9
39y
8
+ ··· 63y 81)
c
11
y
2
(y
4
+ 4y
3
+ 6y
2
5y + 1)
· (y
6
+ 18y
5
+ 189y
4
+ 945y
3
+ 4860y
2
3645y + 729)
· (y
8
+ 6y
7
+ 45y
6
+ 133y
5
136y
4
137y
3
+ 1289y
2
568y + 2704)
· (y
9
+ 27y
8
+ ··· + 328y 81)
23