12n
0324
(K12n
0324
)
A knot diagram
1
Linearized knot diagam
3 6 8 11 2 4 11 1 12 6 4 9
Solving Sequence
4,6 7,12
11 8 3 2 1 5 10 9
c
6
c
11
c
7
c
3
c
2
c
1
c
5
c
10
c
9
c
4
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−6.20623 × 10
189
u
50
+ 1.91950 × 10
190
u
49
+ ··· + 1.83109 × 10
190
b 2.76698 × 10
190
,
6.53118 × 10
190
u
50
2.00240 × 10
191
u
49
+ ··· + 1.83109 × 10
190
a + 4.17386 × 10
191
, u
51
3u
50
+ ··· + 21u + 1i
I
u
2
= h−15199u
17
83246u
16
+ ··· + b 28434, 13363u
17
+ 74911u
16
+ ··· + a + 32129,
u
18
+ 6u
17
+ ··· + 16u + 1i
* 2 irreducible components of dim
C
= 0, with total 69 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−6.21 × 10
189
u
50
+ 1.92 × 10
190
u
49
+ · · · + 1.83 × 10
190
b 2.77 ×
10
190
, 6.53 × 10
190
u
50
2.00 × 10
191
u
49
+ · · · + 1.83 × 10
190
a + 4.17 ×
10
191
, u
51
3u
50
+ · · · + 21u + 1i
(i) Arc colorings
a
4
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
12
=
3.56682u
50
+ 10.9355u
49
+ ··· 381.856u 22.7943
0.338936u
50
1.04828u
49
+ ··· + 35.0303u + 1.51111
a
11
=
3.56682u
50
+ 10.9355u
49
+ ··· 381.856u 22.7943
0.367596u
50
1.14233u
49
+ ··· + 33.6608u + 1.27604
a
8
=
1.31856u
50
4.24593u
49
+ ··· + 43.2461u 7.28846
0.372098u
50
1.15390u
49
+ ··· + 41.7658u + 3.50605
a
3
=
2.56187u
50
8.01615u
49
+ ··· + 312.685u + 11.1314
0.123273u
50
+ 0.394024u
49
+ ··· 16.0948u + 0.114225
a
2
=
2.43859u
50
7.62212u
49
+ ··· + 296.590u + 11.2457
0.123273u
50
+ 0.394024u
49
+ ··· 16.0948u + 0.114225
a
1
=
0.386563u
50
+ 1.15851u
49
+ ··· 202.479u 17.3283
0.237140u
50
0.750279u
49
+ ··· + 32.0577u + 2.33690
a
5
=
2.62715u
50
+ 8.16557u
49
+ ··· 395.092u 18.3358
0.245732u
50
0.780842u
49
+ ··· + 33.6386u + 1.03443
a
10
=
3.93442u
50
+ 12.0779u
49
+ ··· 415.517u 24.0704
0.367596u
50
1.14233u
49
+ ··· + 33.6608u + 1.27604
a
9
=
1.41365u
50
+ 4.64782u
49
+ ··· + 32.0023u + 3.74234
0.0397767u
50
+ 0.116546u
49
+ ··· 24.0454u 1.81099
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.64179u
50
+ 8.09527u
49
+ ··· 400.109u 30.6870
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
51
+ 29u
50
+ ··· 31u + 49
c
2
, c
5
u
51
+ 3u
50
+ ··· + 33u + 7
c
3
u
51
+ u
50
+ ··· 133u + 163
c
4
, c
11
u
51
u
50
+ ··· 3u + 1
c
6
u
51
3u
50
+ ··· + 21u + 1
c
7
u
51
2u
50
+ ··· + 6290u + 161
c
8
, c
9
, c
12
u
51
4u
50
+ ··· + 131u 29
c
10
u
51
+ 33u
49
+ ··· + 63366u + 32041
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
51
y
50
+ ··· + 295745y 2401
c
2
, c
5
y
51
29y
50
+ ··· 31y 49
c
3
y
51
+ 19y
50
+ ··· 159329y 26569
c
4
, c
11
y
51
+ 67y
50
+ ··· + 111y 1
c
6
y
51
87y
50
+ ··· 61y 1
c
7
y
51
+ 68y
50
+ ··· + 46092006y 25921
c
8
, c
9
, c
12
y
51
+ 46y
50
+ ··· + 14783y 841
c
10
y
51
+ 66y
50
+ ··· 134123626y 1026625681
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.438854 + 0.881387I
a = 0.802989 + 0.488950I
b = 1.46263 + 0.44970I
2.55303 + 5.62854I 0
u = 0.438854 0.881387I
a = 0.802989 0.488950I
b = 1.46263 0.44970I
2.55303 5.62854I 0
u = 0.786917 + 0.547490I
a = 1.231510 + 0.622312I
b = 0.561675 0.635936I
5.38314 + 2.25660I 0
u = 0.786917 0.547490I
a = 1.231510 0.622312I
b = 0.561675 + 0.635936I
5.38314 2.25660I 0
u = 0.969635 + 0.549105I
a = 0.592870 0.730545I
b = 1.099540 + 0.169847I
2.80334 + 0.19977I 0
u = 0.969635 0.549105I
a = 0.592870 + 0.730545I
b = 1.099540 0.169847I
2.80334 0.19977I 0
u = 0.258956 + 1.084080I
a = 0.0078550 + 0.1186930I
b = 0.680266 + 0.175141I
2.08270 + 2.42338I 0
u = 0.258956 1.084080I
a = 0.0078550 0.1186930I
b = 0.680266 0.175141I
2.08270 2.42338I 0
u = 0.877771 + 0.053196I
a = 1.06003 0.99974I
b = 0.050000 + 0.341986I
2.86052 + 0.92213I 4.00000 + 0.I
u = 0.877771 0.053196I
a = 1.06003 + 0.99974I
b = 0.050000 0.341986I
2.86052 0.92213I 4.00000 + 0.I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.077227 + 0.787735I
a = 1.39631 + 0.29538I
b = 0.405257 0.172699I
1.082690 0.753222I 8.27224 0.58913I
u = 0.077227 0.787735I
a = 1.39631 0.29538I
b = 0.405257 + 0.172699I
1.082690 + 0.753222I 8.27224 + 0.58913I
u = 0.371822 + 0.643704I
a = 1.319030 + 0.489182I
b = 1.058190 0.552894I
1.31122 + 2.27509I 10.03353 3.12250I
u = 0.371822 0.643704I
a = 1.319030 0.489182I
b = 1.058190 + 0.552894I
1.31122 2.27509I 10.03353 + 3.12250I
u = 0.415418 + 1.187680I
a = 0.210614 + 0.007241I
b = 0.711873 0.851088I
7.01209 + 0.55331I 0
u = 0.415418 1.187680I
a = 0.210614 0.007241I
b = 0.711873 + 0.851088I
7.01209 0.55331I 0
u = 0.851182 + 0.945181I
a = 0.492401 0.719354I
b = 0.574356 + 0.893531I
1.61849 3.97257I 0
u = 0.851182 0.945181I
a = 0.492401 + 0.719354I
b = 0.574356 0.893531I
1.61849 + 3.97257I 0
u = 0.654550
a = 0.815626
b = 0.0235623
1.51224 6.39690
u = 0.61210 + 1.42769I
a = 0.0766712 0.0666805I
b = 0.855685 + 0.583788I
5.29873 + 5.39295I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.61210 1.42769I
a = 0.0766712 + 0.0666805I
b = 0.855685 0.583788I
5.29873 5.39295I 0
u = 0.244067 + 0.211790I
a = 3.58624 0.14006I
b = 0.172244 0.891038I
6.22807 + 3.03641I 0.15194 4.08278I
u = 0.244067 0.211790I
a = 3.58624 + 0.14006I
b = 0.172244 + 0.891038I
6.22807 3.03641I 0.15194 + 4.08278I
u = 0.052211 + 0.243333I
a = 1.65333 + 1.57397I
b = 0.032030 + 0.489627I
0.123994 + 1.016060I 2.35884 6.62848I
u = 0.052211 0.243333I
a = 1.65333 1.57397I
b = 0.032030 0.489627I
0.123994 1.016060I 2.35884 + 6.62848I
u = 0.153372 + 0.111375I
a = 2.84799 + 0.60731I
b = 0.517369 + 1.121390I
1.19162 + 1.61010I 0.97639 + 4.58807I
u = 0.153372 0.111375I
a = 2.84799 0.60731I
b = 0.517369 1.121390I
1.19162 1.61010I 0.97639 4.58807I
u = 0.007539 + 0.153031I
a = 5.36804 + 7.36280I
b = 0.090420 0.966899I
3.36883 + 8.08804I 4.16795 6.45391I
u = 0.007539 0.153031I
a = 5.36804 7.36280I
b = 0.090420 + 0.966899I
3.36883 8.08804I 4.16795 + 6.45391I
u = 0.0981206 + 0.0761409I
a = 2.13969 7.63551I
b = 0.180819 + 1.098890I
2.72745 + 3.79308I 7.08139 6.39060I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.0981206 0.0761409I
a = 2.13969 + 7.63551I
b = 0.180819 1.098890I
2.72745 3.79308I 7.08139 + 6.39060I
u = 2.03972 + 0.34818I
a = 0.167321 0.858121I
b = 0.24093 + 2.09041I
7.53123 4.56112I 0
u = 2.03972 0.34818I
a = 0.167321 + 0.858121I
b = 0.24093 2.09041I
7.53123 + 4.56112I 0
u = 2.11807 + 0.20852I
a = 0.111419 + 0.870257I
b = 0.53451 1.37759I
9.45111 1.99019I 0
u = 2.11807 0.20852I
a = 0.111419 0.870257I
b = 0.53451 + 1.37759I
9.45111 + 1.99019I 0
u = 2.14783 + 0.07904I
a = 0.027350 + 0.853045I
b = 0.32027 1.82960I
12.63600 1.06445I 0
u = 2.14783 0.07904I
a = 0.027350 0.853045I
b = 0.32027 + 1.82960I
12.63600 + 1.06445I 0
u = 2.09075 + 0.50266I
a = 0.344685 0.686017I
b = 0.07196 + 1.68618I
7.39570 + 2.33947I 0
u = 2.09075 0.50266I
a = 0.344685 + 0.686017I
b = 0.07196 1.68618I
7.39570 2.33947I 0
u = 2.16315 + 0.30765I
a = 0.100617 + 0.731102I
b = 0.04164 2.25566I
5.84292 + 0.77536I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 2.16315 0.30765I
a = 0.100617 0.731102I
b = 0.04164 + 2.25566I
5.84292 0.77536I 0
u = 2.24014 + 0.35466I
a = 0.021038 0.775624I
b = 0.69469 + 1.78191I
2.40989 + 7.37799I 0
u = 2.24014 0.35466I
a = 0.021038 + 0.775624I
b = 0.69469 1.78191I
2.40989 7.37799I 0
u = 2.22716 + 0.44704I
a = 0.192890 + 0.625827I
b = 0.19805 1.86310I
5.46694 + 1.77932I 0
u = 2.22716 0.44704I
a = 0.192890 0.625827I
b = 0.19805 + 1.86310I
5.46694 1.77932I 0
u = 2.28681 + 0.02141I
a = 0.069554 + 0.723390I
b = 0.35195 1.92261I
7.57553 + 3.10359I 0
u = 2.28681 0.02141I
a = 0.069554 0.723390I
b = 0.35195 + 1.92261I
7.57553 3.10359I 0
u = 2.29535 + 0.30641I
a = 0.050327 + 0.786971I
b = 0.58797 1.96230I
5.2040 14.0594I 0
u = 2.29535 0.30641I
a = 0.050327 0.786971I
b = 0.58797 + 1.96230I
5.2040 + 14.0594I 0
u = 2.32797 + 0.06553I
a = 0.170579 + 0.730407I
b = 0.32905 1.92841I
10.44840 + 8.57270I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 2.32797 0.06553I
a = 0.170579 0.730407I
b = 0.32905 + 1.92841I
10.44840 8.57270I 0
10
II. I
u
2
= h−15199u
17
83246u
16
+ · · · + b 28434, 13363u
17
+ 74911u
16
+
· · · + a + 32129, u
18
+ 6u
17
+ · · · + 16u + 1i
(i) Arc colorings
a
4
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
12
=
13363u
17
74911u
16
+ ··· 440720u 32129
15199u
17
+ 83246u
16
+ ··· + 403343u + 28434
a
11
=
13363u
17
74911u
16
+ ··· 440720u 32129
13235u
17
+ 72159u
16
+ ··· + 332434u + 23167
a
8
=
16u
17
94u
16
+ ··· 1251u 125
16384u
17
+ 90112u
16
+ ··· + 458752u + 32767
a
3
=
93u
17
558u
16
+ ··· 6698u 592
u
17
6u
16
+ ··· 115u 15
a
2
=
94u
17
564u
16
+ ··· 6813u 607
u
17
6u
16
+ ··· 115u 15
a
1
=
1589u
17
+ 9128u
16
+ ··· + 70803u + 5487
95u
17
+ 557u
16
+ ··· + 5933u + 515
a
5
=
513u
17
2984u
16
+ ··· 27756u 2291
14u
17
83u
16
+ ··· 1120u 110
a
10
=
26598u
17
147070u
16
+ ··· 773154u 55296
13235u
17
+ 72159u
16
+ ··· + 332434u + 23167
a
9
=
24899u
17
137296u
16
+ ··· 695183u 49170
13235u
17
+ 72171u
16
+ ··· + 333330u + 23261
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 96456u
17
+ 526448u
16
+ 968430u
15
43279u
14
4993167u
13
14847798u
12
21267959u
11
7843139u
10
+ 43624726u
9
+ 131260980u
8
+ 221053250u
7
+ 262385524u
6
+
225728266u
5
+ 138033421u
4
+ 57916786u
3
+ 15777654u
2
+ 2510027u + 177106
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
12u
17
+ ··· 12u + 1
c
2
u
18
+ 2u
17
+ ··· + 2u + 1
c
3
u
18
+ 6u
16
+ ··· 6u + 1
c
4
u
18
+ 10u
16
+ ··· + 17u
2
+ 1
c
5
u
18
2u
17
+ ··· 2u + 1
c
6
u
18
+ 6u
17
+ ··· + 16u + 1
c
7
u
18
u
17
+ ··· u + 1
c
8
, c
9
u
18
3u
17
+ ··· 4u + 1
c
10
u
18
+ u
17
+ ··· + u + 1
c
11
u
18
+ 10u
16
+ ··· + 17u
2
+ 1
c
12
u
18
+ 3u
17
+ ··· + 4u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
8y
16
+ ··· 8y + 1
c
2
, c
5
y
18
12y
17
+ ··· 12y + 1
c
3
y
18
+ 12y
17
+ ··· 6y + 1
c
4
, c
11
y
18
+ 20y
17
+ ··· + 34y + 1
c
6
y
18
10y
17
+ ··· 26y + 1
c
7
y
18
+ 13y
17
+ ··· 5y + 1
c
8
, c
9
, c
12
y
18
+ 19y
17
+ ··· + 34y + 1
c
10
y
18
+ 7y
17
+ ··· 9y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.642965 + 1.138500I
a = 0.809556 0.016966I
b = 0.104175 0.781798I
6.64743 1.50205I 0
u = 0.642965 1.138500I
a = 0.809556 + 0.016966I
b = 0.104175 + 0.781798I
6.64743 + 1.50205I 0
u = 0.586828 + 0.199257I
a = 1.39182 + 1.34971I
b = 0.880804 0.592549I
6.10975 2.66232I 2.22310 + 5.30109I
u = 0.586828 0.199257I
a = 1.39182 1.34971I
b = 0.880804 + 0.592549I
6.10975 + 2.66232I 2.22310 5.30109I
u = 0.12002 + 1.43750I
a = 0.563405 + 0.344470I
b = 0.585179 + 0.241540I
5.29038 + 6.84249I 0
u = 0.12002 1.43750I
a = 0.563405 0.344470I
b = 0.585179 0.241540I
5.29038 6.84249I 0
u = 0.533613 + 0.020740I
a = 0.029715 0.541718I
b = 0.493263 + 0.922302I
1.38579 2.18536I 5.51806 + 7.75600I
u = 0.533613 0.020740I
a = 0.029715 + 0.541718I
b = 0.493263 0.922302I
1.38579 + 2.18536I 5.51806 7.75600I
u = 0.483081 + 0.122779I
a = 0.22219 1.99454I
b = 0.880434 + 0.479597I
0.12655 1.97803I 2.99483 + 2.76111I
u = 0.483081 0.122779I
a = 0.22219 + 1.99454I
b = 0.880434 0.479597I
0.12655 + 1.97803I 2.99483 2.76111I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.30885 + 1.52377I
a = 0.446642 0.096804I
b = 0.487692 + 0.273624I
1.24279 + 2.46392I 0
u = 0.30885 1.52377I
a = 0.446642 + 0.096804I
b = 0.487692 0.273624I
1.24279 2.46392I 0
u = 0.413975 + 0.113860I
a = 0.76007 + 3.22513I
b = 0.849984 0.349023I
3.66442 2.08584I 0.82702 + 3.16487I
u = 0.413975 0.113860I
a = 0.76007 3.22513I
b = 0.849984 + 0.349023I
3.66442 + 2.08584I 0.82702 3.16487I
u = 2.09428 + 0.29167I
a = 0.161339 + 0.853648I
b = 0.18266 1.56242I
10.12730 0.84676I 0
u = 2.09428 0.29167I
a = 0.161339 0.853648I
b = 0.18266 + 1.56242I
10.12730 + 0.84676I 0
u = 2.24499 + 0.38125I
a = 0.144822 0.657660I
b = 0.16191 + 2.21998I
6.38032 + 1.49135I 0
u = 2.24499 0.38125I
a = 0.144822 + 0.657660I
b = 0.16191 2.21998I
6.38032 1.49135I 0
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
18
12u
17
+ ··· 12u + 1)(u
51
+ 29u
50
+ ··· 31u + 49)
c
2
(u
18
+ 2u
17
+ ··· + 2u + 1)(u
51
+ 3u
50
+ ··· + 33u + 7)
c
3
(u
18
+ 6u
16
+ ··· 6u + 1)(u
51
+ u
50
+ ··· 133u + 163)
c
4
(u
18
+ 10u
16
+ ··· + 17u
2
+ 1)(u
51
u
50
+ ··· 3u + 1)
c
5
(u
18
2u
17
+ ··· 2u + 1)(u
51
+ 3u
50
+ ··· + 33u + 7)
c
6
(u
18
+ 6u
17
+ ··· + 16u + 1)(u
51
3u
50
+ ··· + 21u + 1)
c
7
(u
18
u
17
+ ··· u + 1)(u
51
2u
50
+ ··· + 6290u + 161)
c
8
, c
9
(u
18
3u
17
+ ··· 4u + 1)(u
51
4u
50
+ ··· + 131u 29)
c
10
(u
18
+ u
17
+ ··· + u + 1)(u
51
+ 33u
49
+ ··· + 63366u + 32041)
c
11
(u
18
+ 10u
16
+ ··· + 17u
2
+ 1)(u
51
u
50
+ ··· 3u + 1)
c
12
(u
18
+ 3u
17
+ ··· + 4u + 1)(u
51
4u
50
+ ··· + 131u 29)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
18
8y
16
+ ··· 8y + 1)(y
51
y
50
+ ··· + 295745y 2401)
c
2
, c
5
(y
18
12y
17
+ ··· 12y + 1)(y
51
29y
50
+ ··· 31y 49)
c
3
(y
18
+ 12y
17
+ ··· 6y + 1)(y
51
+ 19y
50
+ ··· 159329y 26569)
c
4
, c
11
(y
18
+ 20y
17
+ ··· + 34y + 1)(y
51
+ 67y
50
+ ··· + 111y 1)
c
6
(y
18
10y
17
+ ··· 26y + 1)(y
51
87y
50
+ ··· 61y 1)
c
7
(y
18
+ 13y
17
+ ··· 5y + 1)(y
51
+ 68y
50
+ ··· + 4.60920 × 10
7
y 25921)
c
8
, c
9
, c
12
(y
18
+ 19y
17
+ ··· + 34y + 1)(y
51
+ 46y
50
+ ··· + 14783y 841)
c
10
(y
18
+ 7y
17
+ ··· 9y + 1)
· (y
51
+ 66y
50
+ ··· 134123626y 1026625681)
17