12n
0330
(K12n
0330
)
A knot diagram
1
Linearized knot diagam
3 5 7 11 2 4 3 12 1 4 10 9
Solving Sequence
4,10
11 5
7,12
3 8 2 1 6 9
c
10
c
4
c
11
c
3
c
7
c
2
c
1
c
6
c
9
c
5
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h7.74526 × 10
16
u
25
1.33763 × 10
17
u
24
+ ··· + 7.07898 × 10
18
b + 5.73871 × 10
18
,
6.55698 × 10
18
u
25
+ 2.22473 × 10
19
u
24
+ ··· + 1.41580 × 10
19
a 1.02368 × 10
20
, u
26
3u
25
+ ··· + 6u + 8i
I
u
2
= hu
13
+ u
12
u
11
2u
10
+ 4u
9
+ 5u
8
3u
7
6u
6
+ 4u
5
+ 6u
4
u
2
a 2u
3
2u
2
+ b + a + 2u + 1,
u
13
+ 2u
12
3u
10
+ 2u
9
+ 9u
8
+ 2u
7
9u
6
2u
5
+ 10u
4
+ 4u
3
+ a
2
+ au 3u
2
+ 3,
u
14
+ u
13
u
12
2u
11
+ 4u
10
+ 5u
9
3u
8
6u
7
+ 4u
6
+ 6u
5
2u
4
2u
3
+ 2u
2
+ u 1i
I
u
3
= h−u
9
+ u
8
+ 3u
7
2u
6
4u
5
+ u
4
+ u
3
+ 2u
2
+ b + u 1, u
8
+ 2u
6
u
4
2u
2
+ a + 1,
u
10
3u
8
+ 4u
6
u
4
u
2
+ 1i
I
v
1
= ha, 2b + 1, v 2i
* 4 irreducible components of dim
C
= 0, with total 65 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h7.75×10
16
u
25
1.34×10
17
u
24
+· · ·+7.08×10
18
b+5.74×10
18
, 6.56×
10
18
u
25
+2.22×10
19
u
24
+· · ·+1.42×10
19
a1.02×10
20
, u
26
3u
25
+· · ·+6u+8i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
5
=
u
u
3
+ u
a
7
=
0.463130u
25
1.57137u
24
+ ··· 7.38977u + 7.23041
0.0109412u
25
+ 0.0188959u
24
+ ··· + 0.948527u 0.810670
a
12
=
u
2
+ 1
u
2
a
3
=
0.452189u
25
+ 1.55247u
24
+ ··· + 6.44124u 6.41974
0.139816u
25
+ 0.520475u
24
+ ··· + 3.39062u 2.37790
a
8
=
1.05514u
25
3.64431u
24
+ ··· 16.2216u + 16.0280
0.00913190u
25
0.0544808u
24
+ ··· + 0.384691u 0.813121
a
2
=
0.257452u
25
+ 0.942913u
24
+ ··· + 3.82805u 4.96393
0.288157u
25
+ 0.949849u
24
+ ··· + 4.59799u 3.63094
a
1
=
1.06427u
25
+ 3.69879u
24
+ ··· + 15.8369u 15.2149
0.283474u
25
+ 1.06311u
24
+ ··· + 5.86288u 4.86106
a
6
=
0.463130u
25
1.57137u
24
+ ··· 7.38977u + 7.23041
0.183796u
25
0.590662u
24
+ ··· 1.66466u + 0.645138
a
9
=
1.28428u
25
4.51273u
24
+ ··· 21.0928u + 19.1876
0.0634646u
25
0.249171u
24
+ ··· 0.606969u + 0.888390
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2235431246280387471
2022564411084206648
u
25
50383957546292106623
14157950877589446536
u
24
+ ···
96855145260069592069
14157950877589446536
u +
73272041333640892293
7078975438794723268
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
26
+ 5u
25
+ ··· 5u + 1
c
2
, c
3
, c
5
c
6
, c
7
u
26
u
25
+ ··· 3u 1
c
4
, c
10
u
26
3u
25
+ ··· + 6u + 8
c
8
, c
9
, c
12
u
26
2u
25
+ ··· + 7u 4
c
11
u
26
+ 9u
25
+ ··· + 436u + 64
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
26
+ 37y
25
+ ··· 157y + 1
c
2
, c
3
, c
5
c
6
, c
7
y
26
+ 5y
25
+ ··· 5y + 1
c
4
, c
10
y
26
9y
25
+ ··· 436y + 64
c
8
, c
9
, c
12
y
26
22y
25
+ ··· 65y + 16
c
11
y
26
+ 15y
25
+ ··· 142352y + 4096
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.982745 + 0.211485I
a = 0.402843 0.499085I
b = 0.232498 + 0.875894I
1.77257 + 0.70535I 4.40558 + 0.51415I
u = 0.982745 0.211485I
a = 0.402843 + 0.499085I
b = 0.232498 0.875894I
1.77257 0.70535I 4.40558 0.51415I
u = 0.010508 + 1.069030I
a = 0.600779 0.379610I
b = 0.115449 + 0.616202I
3.79097 1.46714I 5.06055 + 4.75413I
u = 0.010508 1.069030I
a = 0.600779 + 0.379610I
b = 0.115449 0.616202I
3.79097 + 1.46714I 5.06055 4.75413I
u = 0.734341 + 0.797765I
a = 1.257320 0.172643I
b = 0.228017 + 1.091210I
2.81865 0.76966I 3.02229 + 2.23661I
u = 0.734341 0.797765I
a = 1.257320 + 0.172643I
b = 0.228017 1.091210I
2.81865 + 0.76966I 3.02229 2.23661I
u = 1.074650 + 0.168126I
a = 0.355808 + 0.706778I
b = 0.039591 1.309980I
1.79599 3.76105I 4.80263 + 8.00937I
u = 1.074650 0.168126I
a = 0.355808 0.706778I
b = 0.039591 + 1.309980I
1.79599 + 3.76105I 4.80263 8.00937I
u = 0.745967 + 0.945276I
a = 1.129930 0.091852I
b = 0.012396 + 1.135900I
6.07946 3.67877I 0.12041 + 2.47120I
u = 0.745967 0.945276I
a = 1.129930 + 0.091852I
b = 0.012396 1.135900I
6.07946 + 3.67877I 0.12041 2.47120I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.021750 + 0.716695I
a = 0.081674 + 1.052890I
b = 0.92093 2.01835I
1.91220 4.97774I 4.59322 + 4.08967I
u = 1.021750 0.716695I
a = 0.081674 1.052890I
b = 0.92093 + 2.01835I
1.91220 + 4.97774I 4.59322 4.08967I
u = 0.755105 + 1.061790I
a = 1.036650 0.033748I
b = 0.151747 + 1.120760I
1.48699 + 8.04356I 4.72322 5.24092I
u = 0.755105 1.061790I
a = 1.036650 + 0.033748I
b = 0.151747 1.120760I
1.48699 8.04356I 4.72322 + 5.24092I
u = 1.062230 + 0.805325I
a = 0.007950 + 1.055910I
b = 1.20574 1.93593I
5.07466 + 10.13450I 2.10298 6.96057I
u = 1.062230 0.805325I
a = 0.007950 1.055910I
b = 1.20574 + 1.93593I
5.07466 10.13450I 2.10298 + 6.96057I
u = 1.279790 + 0.462764I
a = 0.302749 0.444518I
b = 0.042614 + 0.739956I
7.94739 3.73170I 5.56768 0.86519I
u = 1.279790 0.462764I
a = 0.302749 + 0.444518I
b = 0.042614 0.739956I
7.94739 + 3.73170I 5.56768 + 0.86519I
u = 0.175064 + 0.597925I
a = 0.812678 0.972268I
b = 0.082343 + 0.525293I
1.28130 + 0.88301I 4.68220 2.63665I
u = 0.175064 0.597925I
a = 0.812678 + 0.972268I
b = 0.082343 0.525293I
1.28130 0.88301I 4.68220 + 2.63665I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.355470 + 0.349551I
a = 0.160592 + 0.704597I
b = 0.398277 1.175870I
8.58893 + 6.63218I 8.67236 8.09999I
u = 1.355470 0.349551I
a = 0.160592 0.704597I
b = 0.398277 + 1.175870I
8.58893 6.63218I 8.67236 + 8.09999I
u = 1.109820 + 0.856025I
a = 0.068276 + 1.033520I
b = 1.36937 1.78727I
0.3265 14.9979I 5.89395 + 8.70861I
u = 1.109820 0.856025I
a = 0.068276 1.033520I
b = 1.36937 + 1.78727I
0.3265 + 14.9979I 5.89395 8.70861I
u = 0.541106
a = 2.33904
b = 0.621412
0.468550 16.1730
u = 0.488142
a = 0.570097
b = 0.728748
1.21370 9.51190
7
II.
I
u
2
= hu
13
+ u
12
+ · · · + a + 1, u
13
+ 2u
12
+ · · · + a
2
+ 3, u
14
+ u
13
+ · · · + u 1i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
5
=
u
u
3
+ u
a
7
=
a
u
13
u
12
+ ··· a 1
a
12
=
u
2
+ 1
u
2
a
3
=
u
13
+ u
12
+ ··· + 2u + 1
u
13
u
12
+ ··· + a 1
a
8
=
u
5
+ u
u
7
u
5
+ 2u
3
u
a
2
=
u
13
+ u
12
+ ··· + 2u + 1
u
13
u
12
+ ··· + a 1
a
1
=
u
7
2u
3
u
9
+ u
7
3u
5
+ 2u
3
u
a
6
=
a
u
13
u
12
+ ··· a 1
a
9
=
u
11
+ 2u
9
4u
7
+ 6u
5
3u
3
+ 2u
u
11
u
9
+ 4u
7
3u
5
+ 3u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
12
4u
11
+ 4u
10
+ 8u
9
16u
8
16u
7
+ 12u
6
+ 20u
5
16u
4
12u
3
+ 8u
2
10
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
28
+ 11u
27
+ ··· + 2888u + 289
c
2
, c
3
, c
5
c
6
, c
7
u
28
+ 3u
27
+ ··· + 74u + 17
c
4
, c
10
(u
14
+ u
13
+ ··· + u 1)
2
c
8
, c
9
, c
12
(u
14
u
13
+ ··· 3u 1)
2
c
11
(u
14
+ 3u
13
+ ··· + 5u + 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
28
+ 11y
27
+ ··· + 1428812y + 83521
c
2
, c
3
, c
5
c
6
, c
7
y
28
+ 11y
27
+ ··· + 2888y + 289
c
4
, c
10
(y
14
3y
13
+ ··· 5y + 1)
2
c
8
, c
9
, c
12
(y
14
11y
13
+ ··· 5y + 1)
2
c
11
(y
14
+ 17y
13
+ ··· y + 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.919323 + 0.470231I
a = 0.404207 + 0.774825I
b = 1.380120 0.199773I
6.26948 4.88256I 7.68599 + 6.44337I
u = 0.919323 + 0.470231I
a = 0.515117 1.245060I
b = 0.407942 + 0.463734I
6.26948 4.88256I 7.68599 + 6.44337I
u = 0.919323 0.470231I
a = 0.404207 0.774825I
b = 1.380120 + 0.199773I
6.26948 + 4.88256I 7.68599 6.44337I
u = 0.919323 0.470231I
a = 0.515117 + 1.245060I
b = 0.407942 0.463734I
6.26948 + 4.88256I 7.68599 6.44337I
u = 0.924961
a = 0.46248 + 1.34555I
b = 1.014320 0.194361I
8.84982 12.7050
u = 0.924961
a = 0.46248 1.34555I
b = 1.014320 + 0.194361I
8.84982 12.7050
u = 0.726911 + 0.518054I
a = 0.725706 1.116820I
b = 0.465841 + 0.930039I
1.93761 + 1.98638I 0.65592 5.08636I
u = 0.726911 + 0.518054I
a = 0.001206 + 0.598768I
b = 1.362390 + 0.206201I
1.93761 + 1.98638I 0.65592 5.08636I
u = 0.726911 0.518054I
a = 0.725706 + 1.116820I
b = 0.465841 0.930039I
1.93761 1.98638I 0.65592 + 5.08636I
u = 0.726911 0.518054I
a = 0.001206 0.598768I
b = 1.362390 0.206201I
1.93761 1.98638I 0.65592 + 5.08636I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.879333 + 0.897049I
a = 0.981434 + 0.058694I
b = 0.362451 1.040360I
2.51115 1.51934I 3.12222 + 0.64840I
u = 0.879333 + 0.897049I
a = 0.102101 0.955743I
b = 0.84520 + 1.71540I
2.51115 1.51934I 3.12222 + 0.64840I
u = 0.879333 0.897049I
a = 0.981434 0.058694I
b = 0.362451 + 1.040360I
2.51115 + 1.51934I 3.12222 0.64840I
u = 0.879333 0.897049I
a = 0.102101 + 0.955743I
b = 0.84520 1.71540I
2.51115 + 1.51934I 3.12222 0.64840I
u = 0.405736 + 0.602281I
a = 0.914419 + 0.321246I
b = 2.02195 + 1.20408I
4.70274 + 0.85224I 3.59802 0.38712I
u = 0.405736 + 0.602281I
a = 1.32016 0.92353I
b = 1.26370 + 1.60335I
4.70274 + 0.85224I 3.59802 0.38712I
u = 0.405736 0.602281I
a = 0.914419 0.321246I
b = 2.02195 1.20408I
4.70274 0.85224I 3.59802 + 0.38712I
u = 0.405736 0.602281I
a = 1.32016 + 0.92353I
b = 1.26370 1.60335I
4.70274 0.85224I 3.59802 + 0.38712I
u = 0.924969 + 0.883501I
a = 0.980532 + 0.152079I
b = 0.093102 1.203290I
6.36134 3.26499I 0.09314 + 2.49004I
u = 0.924969 + 0.883501I
a = 0.055563 1.035580I
b = 1.07584 + 1.58872I
6.36134 3.26499I 0.09314 + 2.49004I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.924969 0.883501I
a = 0.980532 0.152079I
b = 0.093102 + 1.203290I
6.36134 + 3.26499I 0.09314 2.49004I
u = 0.924969 0.883501I
a = 0.055563 + 1.035580I
b = 1.07584 1.58872I
6.36134 + 3.26499I 0.09314 2.49004I
u = 0.961925 + 0.860252I
a = 0.966136 + 0.234062I
b = 0.177845 1.273080I
2.24783 + 8.01486I 3.63204 5.37427I
u = 0.961925 + 0.860252I
a = 0.004211 1.094310I
b = 1.23004 + 1.41511I
2.24783 + 8.01486I 3.63204 5.37427I
u = 0.961925 0.860252I
a = 0.966136 0.234062I
b = 0.177845 + 1.273080I
2.24783 8.01486I 3.63204 + 5.37427I
u = 0.961925 0.860252I
a = 0.004211 + 1.094310I
b = 1.23004 1.41511I
2.24783 8.01486I 3.63204 + 5.37427I
u = 0.561243
a = 0.28062 + 1.84686I
b = 1.58953 1.26511I
4.02051 10.0930
u = 0.561243
a = 0.28062 1.84686I
b = 1.58953 + 1.26511I
4.02051 10.0930
13
III. I
u
3
=
h−u
9
+u
8
+· · ·+b1, u
8
+2u
6
u
4
2u
2
+a+1, u
10
3u
8
+4u
6
u
4
u
2
+1i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
5
=
u
u
3
+ u
a
7
=
u
8
2u
6
+ u
4
+ 2u
2
1
u
9
u
8
3u
7
+ 2u
6
+ 4u
5
u
4
u
3
2u
2
u + 1
a
12
=
u
2
+ 1
u
2
a
3
=
u
9
+ 3u
7
4u
5
+ u
3
+ u
u
9
+ u
8
3u
7
2u
6
+ 4u
5
+ u
4
u
3
+ 2u
2
1
a
8
=
0
u
8
+ 3u
6
3u
4
+ 1
a
2
=
u
9
u
8
+ 3u
7
+ 3u
6
4u
5
3u
4
+ u
3
+ u + 1
u
9
+ 2u
8
3u
7
4u
6
+ 4u
5
+ 3u
4
u
3
+ 2u
2
1
a
1
=
u
8
+ 3u
6
3u
4
+ 1
u
8
2u
6
+ 2u
4
a
6
=
u
8
2u
6
+ u
4
+ 2u
2
1
u
9
3u
7
u
6
+ 4u
5
+ 2u
4
u
3
2u
2
u
a
9
=
u
4
u
2
+ 1
u
6
2u
4
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
8
8u
6
+ 8u
4
+ 4u
2
12
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
10
c
2
, c
3
, c
5
c
6
, c
7
(u
2
+ 1)
5
c
4
, c
10
u
10
3u
8
+ 4u
6
u
4
u
2
+ 1
c
8
, c
9
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
c
11
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
2
c
12
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
10
c
2
, c
3
, c
5
c
6
, c
7
(y + 1)
10
c
4
, c
10
(y
5
3y
4
+ 4y
3
y
2
y + 1)
2
c
8
, c
9
, c
12
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
c
11
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.822375 + 0.339110I
a = 0.428550 1.039280I
b = 0.61073 + 1.46782I
3.61897 + 1.53058I 8.51511 4.43065I
u = 0.822375 0.339110I
a = 0.428550 + 1.039280I
b = 0.61073 1.46782I
3.61897 1.53058I 8.51511 + 4.43065I
u = 0.822375 + 0.339110I
a = 0.428550 + 1.039280I
b = 1.46782 0.61073I
3.61897 1.53058I 8.51511 + 4.43065I
u = 0.822375 0.339110I
a = 0.428550 1.039280I
b = 1.46782 + 0.61073I
3.61897 + 1.53058I 8.51511 4.43065I
u = 0.766826I
a = 1.30408
b = 1.30408 + 1.30408I
5.69095 9.48110
u = 0.766826I
a = 1.30408
b = 1.30408 1.30408I
5.69095 9.48110
u = 1.200150 + 0.455697I
a = 0.276511 + 0.728237I
b = 1.004750 0.451726I
9.16243 + 4.40083I 12.74431 3.49859I
u = 1.200150 0.455697I
a = 0.276511 0.728237I
b = 1.004750 + 0.451726I
9.16243 4.40083I 12.74431 + 3.49859I
u = 1.200150 + 0.455697I
a = 0.276511 0.728237I
b = 0.451726 + 1.004750I
9.16243 4.40083I 12.74431 + 3.49859I
u = 1.200150 0.455697I
a = 0.276511 + 0.728237I
b = 0.451726 1.004750I
9.16243 + 4.40083I 12.74431 3.49859I
17
IV. I
v
1
= ha, 2b + 1, v 2i
(i) Arc colorings
a
4
=
2
0
a
10
=
1
0
a
11
=
1
0
a
5
=
2
0
a
7
=
0
0.5
a
12
=
1
0
a
3
=
2
0.5
a
8
=
2
1
a
2
=
0
0.5
a
1
=
2
1
a
6
=
2
0.5
a
9
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.25
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
12
u + 1
c
4
, c
10
, c
11
u
c
5
, c
6
, c
7
c
8
, c
9
u 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
9
, c
12
y 1
c
4
, c
10
, c
11
y
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 2.00000
a = 0
b = 0.500000
0 2.25000
21
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
10
)(u + 1)(u
26
+ 5u
25
+ ··· 5u + 1)
· (u
28
+ 11u
27
+ ··· + 2888u + 289)
c
2
, c
3
(u + 1)(u
2
+ 1)
5
(u
26
u
25
+ ··· 3u 1)(u
28
+ 3u
27
+ ··· + 74u + 17)
c
4
, c
10
u(u
10
3u
8
+ ··· u
2
+ 1)(u
14
+ u
13
+ ··· + u 1)
2
· (u
26
3u
25
+ ··· + 6u + 8)
c
5
, c
6
, c
7
(u 1)(u
2
+ 1)
5
(u
26
u
25
+ ··· 3u 1)(u
28
+ 3u
27
+ ··· + 74u + 17)
c
8
, c
9
(u 1)(u
5
+ u
4
+ ··· + u 1)
2
(u
14
u
13
+ ··· 3u 1)
2
· (u
26
2u
25
+ ··· + 7u 4)
c
11
u(u
5
+ 3u
4
+ ··· u 1)
2
(u
14
+ 3u
13
+ ··· + 5u + 1)
2
· (u
26
+ 9u
25
+ ··· + 436u + 64)
c
12
(u + 1)(u
5
u
4
+ ··· + u + 1)
2
(u
14
u
13
+ ··· 3u 1)
2
· (u
26
2u
25
+ ··· + 7u 4)
22
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
11
)(y
26
+ 37y
25
+ ··· 157y + 1)
· (y
28
+ 11y
27
+ ··· + 1428812y + 83521)
c
2
, c
3
, c
5
c
6
, c
7
(y 1)(y + 1)
10
(y
26
+ 5y
25
+ ··· 5y + 1)
· (y
28
+ 11y
27
+ ··· + 2888y + 289)
c
4
, c
10
y(y
5
3y
4
+ ··· y + 1)
2
(y
14
3y
13
+ ··· 5y + 1)
2
· (y
26
9y
25
+ ··· 436y + 64)
c
8
, c
9
, c
12
(y 1)(y
5
5y
4
+ ··· y 1)
2
(y
14
11y
13
+ ··· 5y + 1)
2
· (y
26
22y
25
+ ··· 65y + 16)
c
11
y(y
5
y
4
+ ··· + 3y 1)
2
(y
14
+ 17y
13
+ ··· y + 1)
2
· (y
26
+ 15y
25
+ ··· 142352y + 4096)
23