10
157
(K10n
42
)
A knot diagram
1
Linearized knot diagam
4 5 9 7 3 1 5 6 4 6
Solving Sequence
3,5 6,7
8 9 2 4 1 10
c
5
c
7
c
8
c
2
c
4
c
1
c
10
c
3
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hb + u, u
2
+ a 2u, u
3
+ 2u
2
+ u 1i
I
u
2
= hu
2
a + u
2
+ b, u
2
a + a
2
3u
2
+ 2a + 4u 3, u
3
u
2
+ 1i
I
u
3
= h3u
5
+ 5u
4
2u
3
15u
2
+ 4b 22u 12, 5u
5
5u
4
+ 4u
3
+ 21u
2
+ 8a + 28u + 12,
u
6
+ 3u
5
+ 2u
4
5u
3
14u
2
16u 8i
I
u
4
= hb + u, u
2
+ a, u
3
u + 1i
I
u
5
= hb + u, 2u
2
a + a
2
3au + 2u
2
4u + 4, u
3
u
2
+ 1i
I
u
6
= hau + b u + 1, u
2
a + a
2
+ au + u
2
a u + 1, u
3
u
2
+ 1i
I
u
7
= hb u + 1, a + 2u 2, u
2
u 1i
I
u
8
= hb u 1, a, u
2
+ u + 1i
* 8 irreducible components of dim
C
= 0, with total 34 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb + u, u
2
+ a 2u, u
3
+ 2u
2
+ u 1i
(i) Arc colorings
a
3
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
7
=
u
2
+ 2u
u
a
8
=
u
2
+ u
u
a
9
=
1
u 1
a
2
=
u
u
a
4
=
u
u
2
a
1
=
u
2
+ u 1
u + 1
a
10
=
u
2
1
2u
2
2u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 13
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
3
3u
2
+ 4u 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
10
u
3
+ 2u
2
+ u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
3
y
2
+ 10y 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
10
y
3
2y
2
+ 5y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.23279 + 0.79255I
a = 1.57395 0.36899I
b = 1.23279 0.79255I
1.24160 12.66530I 9.43351 + 7.81637I
u = 1.23279 0.79255I
a = 1.57395 + 0.36899I
b = 1.23279 + 0.79255I
1.24160 + 12.66530I 9.43351 7.81637I
u = 0.465571
a = 1.14790
b = 0.465571
0.806671 12.1330
5
II. I
u
2
= hu
2
a + u
2
+ b, u
2
a + a
2
3u
2
+ 2a + 4u 3, u
3
u
2
+ 1i
(i) Arc colorings
a
3
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
7
=
a
u
2
a u
2
a
8
=
u
2
a u
2
+ a
u
2
a u
2
a
9
=
au + u
2
u 1
au u
2
+ 2u + 1
a
2
=
u
u
a
4
=
au 2u
2
+ a + 3u
u
2
a au + u
2
3u
a
1
=
u
2
a au u
2
+ u
au
a
10
=
u
2
a au u
2
au + u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u + 14
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
6
3u
4
2u
3
+ 6u
2
2u 1
c
2
, c
5
, c
6
c
10
(u
3
u
2
+ 1)
2
c
3
, c
4
, c
7
c
9
u
6
+ 3u
5
+ 2u
4
5u
3
14u
2
16u 8
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
6
6y
5
+ 21y
4
42y
3
+ 34y
2
16y + 1
c
2
, c
5
, c
6
c
10
(y
3
y
2
+ 2y 1)
2
c
3
, c
4
, c
7
c
9
y
6
5y
5
+ 6y
4
y
3
+ 4y
2
32y + 64
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.165364 + 0.499124I
b = 0.472913 1.198340I
1.11345 + 5.65624I 6.98049 5.95889I
u = 0.877439 + 0.744862I
a = 1.61956 + 0.80802I
b = 1.189450 + 0.636059I
1.11345 + 5.65624I 6.98049 5.95889I
u = 0.877439 0.744862I
a = 0.165364 0.499124I
b = 0.472913 + 1.198340I
1.11345 5.65624I 6.98049 + 5.95889I
u = 0.877439 0.744862I
a = 1.61956 0.80802I
b = 1.189450 0.636059I
1.11345 5.65624I 6.98049 + 5.95889I
u = 0.754878
a = 2.15552
b = 1.79815
7.16171 20.0390
u = 0.754878
a = 3.58568
b = 1.47343
7.16171 20.0390
9
III. I
u
3
= h3u
5
+ 5u
4
2u
3
15u
2
+ 4b 22u 12, 5u
5
5u
4
+ 4u
3
+
21u
2
+ 8a + 28u + 12, u
6
+ 3u
5
+ 2u
4
5u
3
14u
2
16u 8i
(i) Arc colorings
a
3
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
7
=
5
8
u
5
+
5
8
u
4
+ ···
7
2
u
3
2
3
4
u
5
5
4
u
4
+ ··· +
11
2
u + 3
a
8
=
1
8
u
5
5
8
u
4
+ ··· + 2u +
3
2
3
4
u
5
5
4
u
4
+ ··· +
11
2
u + 3
a
9
=
3
8
u
5
3
8
u
4
+ ··· +
3
2
u +
1
2
5
4
u
5
+
7
4
u
4
+ ···
17
2
u 5
a
2
=
u
u
a
4
=
1
4
u
5
1
4
u
4
+ ··· + u +
1
2
1
2
u
5
+ u
4
+ ···
7
2
u 2
a
1
=
1
4
u
5
1
2
u
4
+ ··· +
9
4
u + 2
1
4
u
5
+
1
4
u
4
1
4
u
2
u 2
a
10
=
1
4
u
4
1
4
u
3
+
5
4
u + 2
3
4
u
5
3
4
u
4
+
11
4
u
2
+ 5u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
5
10u
4
+ 4u
3
+ 30u
2
+ 44u + 38
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
6
3u
4
2u
3
+ 6u
2
2u 1
c
2
, c
5
, c
6
c
10
u
6
+ 3u
5
+ 2u
4
5u
3
14u
2
16u 8
c
3
, c
4
, c
7
c
9
(u
3
u
2
+ 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
6
6y
5
+ 21y
4
42y
3
+ 34y
2
16y + 1
c
2
, c
5
, c
6
c
10
y
6
5y
5
+ 6y
4
y
3
+ 4y
2
32y + 64
c
3
, c
4
, c
7
c
9
(y
3
y
2
+ 2y 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.472913 + 1.198340I
a = 0.374563 + 0.283509I
b = 0.877439 0.744862I
1.11345 + 5.65624I 6.98049 5.95889I
u = 0.472913 1.198340I
a = 0.374563 0.283509I
b = 0.877439 + 0.744862I
1.11345 5.65624I 6.98049 + 5.95889I
u = 1.189450 + 0.636059I
a = 1.49641 + 0.38207I
b = 0.877439 + 0.744862I
1.11345 5.65624I 6.98049 + 5.95889I
u = 1.189450 0.636059I
a = 1.49641 0.38207I
b = 0.877439 0.744862I
1.11345 + 5.65624I 6.98049 5.95889I
u = 1.47343
a = 1.83705
b = 0.754878
7.16171 20.0390
u = 1.79815
a = 0.904909
b = 0.754878
7.16171 20.0390
13
IV. I
u
4
= hb + u, u
2
+ a, u
3
u + 1i
(i) Arc colorings
a
3
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
7
=
u
2
u
a
8
=
u
2
u
u
a
9
=
1
u + 1
a
2
=
u
u
a
4
=
u
u
2
a
1
=
u
2
u 1
u 1
a
10
=
u
2
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
8u + 13
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
u
2
+ 2u 1
c
2
, c
4
, c
6
c
9
u
3
u 1
c
3
, c
5
, c
7
c
10
u
3
u + 1
c
8
u
3
+ u
2
+ 2u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
3
+ 3y
2
+ 2y 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
10
y
3
2y
2
+ y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.662359 + 0.562280I
a = 0.122561 0.744862I
b = 0.662359 0.562280I
1.83893 + 3.77083I 7.21088 7.47768I
u = 0.662359 0.562280I
a = 0.122561 + 0.744862I
b = 0.662359 + 0.562280I
1.83893 3.77083I 7.21088 + 7.47768I
u = 1.32472
a = 1.75488
b = 1.32472
9.48162 16.5780
17
V. I
u
5
= hb + u, 2u
2
a + a
2
3au + 2u
2
4u + 4, u
3
u
2
+ 1i
(i) Arc colorings
a
3
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
7
=
a
u
a
8
=
a u
u
a
9
=
u
2
a + u
2
+ a 1
u
2
a au u
2
a + 2
a
2
=
u
u
a
4
=
au + 1
u
2
a
1
=
u
2
2u + 1
u
2
a + au + u
2
+ a 2
a
10
=
u
2
a au a u + 2
2au + a u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
a 4au 4u
2
4a + 18
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
(u
3
+ u
2
+ 2u + 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
10
(u
3
u
2
+ 1)
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
10
(y
3
y
2
+ 2y 1)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.592519 0.137827I
b = 0.877439 0.744862I
3.02413 + 2.82812I 13.50976 2.97945I
u = 0.877439 + 0.744862I
a = 1.60964 0.24187I
b = 0.877439 0.744862I
1.11345 6.98049 + 0.I
u = 0.877439 0.744862I
a = 0.592519 + 0.137827I
b = 0.877439 + 0.744862I
3.02413 2.82812I 13.50976 + 2.97945I
u = 0.877439 0.744862I
a = 1.60964 + 0.24187I
b = 0.877439 + 0.744862I
1.11345 6.98049 + 0.I
u = 0.754878
a = 1.70216 + 2.29387I
b = 0.754878
3.02413 2.82812I 13.50976 + 2.97945I
u = 0.754878
a = 1.70216 2.29387I
b = 0.754878
3.02413 + 2.82812I 13.50976 2.97945I
21
VI. I
u
6
= hau + b u + 1, u
2
a + a
2
+ au + u
2
a u + 1, u
3
u
2
+ 1i
(i) Arc colorings
a
3
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
7
=
a
au + u 1
a
8
=
au + a + u 1
au + u 1
a
9
=
1
au u
2
+ a + u 2
a
2
=
u
u
a
4
=
u
u
2
a + au u + 1
a
1
=
au + u
2
u
u
2
a + au + a + 1
a
10
=
u
2
1
au + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4au + 10
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
6
5u
5
+ 14u
4
25u
3
+ 28u
2
20u + 8
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
10
(u
3
u
2
+ 1)
2
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
6
+ 3y
5
+ 2y
4
25y
3
+ 8y
2
+ 48y + 64
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
10
(y
3
y
2
+ 2y 1)
2
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.162359 + 0.986732I
b = 0.754878
3.02413 + 2.82812I 13.50976 2.97945I
u = 0.877439 + 0.744862I
a = 0.500000 0.424452I
b = 0.877439 + 0.744862I
1.11345 6.98049 + 0.I
u = 0.877439 0.744862I
a = 0.162359 0.986732I
b = 0.754878
3.02413 2.82812I 13.50976 + 2.97945I
u = 0.877439 0.744862I
a = 0.500000 + 0.424452I
b = 0.877439 0.744862I
1.11345 6.98049 + 0.I
u = 0.754878
a = 1.16236 + 0.98673I
b = 0.877439 + 0.744862I
3.02413 2.82812I 13.50976 + 2.97945I
u = 0.754878
a = 1.16236 0.98673I
b = 0.877439 0.744862I
3.02413 + 2.82812I 13.50976 2.97945I
25
VII. I
u
7
= hb u + 1, a + 2u 2, u
2
u 1i
(i) Arc colorings
a
3
=
0
u
a
5
=
1
0
a
6
=
1
u 1
a
7
=
2u + 2
u 1
a
8
=
u + 1
u 1
a
9
=
u + 2
2
a
2
=
u
u
a
4
=
2u 3
u + 2
a
1
=
u 3
2
a
10
=
2u 3
2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u + 1)
2
c
2
, c
4
, c
6
c
9
u
2
+ u 1
c
3
, c
5
, c
7
c
10
u
2
u 1
c
8
(u 1)
2
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
10
y
2
3y + 1
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.618034
a = 3.23607
b = 1.61803
6.57974 3.00000
u = 1.61803
a = 1.23607
b = 0.618034
6.57974 3.00000
29
VIII. I
u
8
= hb u 1, a, u
2
+ u + 1i
(i) Arc colorings
a
3
=
0
u
a
5
=
1
0
a
6
=
1
u + 1
a
7
=
0
u + 1
a
8
=
u + 1
u + 1
a
9
=
u
0
a
2
=
u
u
a
4
=
1
u
a
1
=
u 1
0
a
10
=
2u 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
(u + 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
10
u
2
+ u + 1
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
10
y
2
+ y + 1
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0
b = 0.500000 + 0.866025I
3.28987 3.00000
u = 0.500000 0.866025I
a = 0
b = 0.500000 0.866025I
3.28987 3.00000
33
IX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u + 1)
4
(u
3
3u
2
+ 4u 1)(u
3
u
2
+ 2u 1)(u
3
+ u
2
+ 2u + 1)
2
· (u
6
3u
4
2u
3
+ 6u
2
2u 1)
2
· (u
6
5u
5
+ 14u
4
25u
3
+ 28u
2
20u + 8)
c
2
, c
4
, c
6
c
9
(u
2
+ u 1)(u
2
+ u + 1)(u
3
u 1)(u
3
u
2
+ 1)
6
(u
3
+ 2u
2
+ u 1)
· (u
6
+ 3u
5
+ 2u
4
5u
3
14u
2
16u 8)
c
3
, c
5
, c
7
c
10
(u
2
u 1)(u
2
+ u + 1)(u
3
u + 1)(u
3
u
2
+ 1)
6
(u
3
+ 2u
2
+ u 1)
· (u
6
+ 3u
5
+ 2u
4
5u
3
14u
2
16u 8)
c
8
(u 1)
2
(u + 1)
2
(u
3
3u
2
+ 4u 1)(u
3
+ u
2
+ 2u + 1)
3
· (u
6
3u
4
2u
3
+ 6u
2
2u 1)
2
· (u
6
5u
5
+ 14u
4
25u
3
+ 28u
2
20u + 8)
34
X. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y 1)
4
(y
3
y
2
+ 10y 1)(y
3
+ 3y
2
+ 2y 1)
3
· (y
6
6y
5
+ 21y
4
42y
3
+ 34y
2
16y + 1)
2
· (y
6
+ 3y
5
+ 2y
4
25y
3
+ 8y
2
+ 48y + 64)
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
10
(y
2
3y + 1)(y
2
+ y + 1)(y
3
2y
2
+ y 1)(y
3
2y
2
+ 5y 1)
· (y
3
y
2
+ 2y 1)
6
(y
6
5y
5
+ 6y
4
y
3
+ 4y
2
32y + 64)
35