12n
0333
(K12n
0333
)
A knot diagram
1
Linearized knot diagam
3 5 7 11 2 4 3 1 12 4 10 9
Solving Sequence
4,11 2,5
6 7 3 1 10 12 9 8
c
4
c
5
c
6
c
3
c
1
c
10
c
11
c
9
c
8
c
2
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hu
14
u
13
u
12
+ 3u
11
+ 3u
10
5u
9
2u
8
+ 7u
7
+ 3u
6
6u
5
2u
4
+ 4u
3
+ b u + 1,
u
15
+ u
14
+ u
13
2u
12
3u
11
+ 4u
10
+ 4u
9
4u
8
3u
7
+ 4u
6
+ 6u
5
2u
4
+ 2a 1,
u
16
3u
15
+ 3u
14
+ 2u
13
3u
12
6u
11
+ 12u
10
9u
8
2u
7
+ 12u
6
2u
5
8u
4
+ 4u
3
+ 2u
2
3u + 2i
I
u
2
= hb + 1, 2u
5
a + 4u
6
+ 2u
4
a + 7u
5
+ 3u
4
2u
2
a 2u
3
+ a
2
+ 4au + 7u
2
+ 3a + 14u + 5,
u
7
+ u
6
u
4
+ 2u
3
+ 2u
2
1i
I
u
3
= hu
7
u
5
+ 2u
3
+ b u + 1, u
7
u
6
+ u
5
+ u
4
+ 2u
3
3u
2
+ a + 2u + 2, u
8
u
6
+ 3u
4
2u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 38 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
14
u
13
+· · ·+b+1, u
15
+u
14
+· · ·+2a1, u
16
3u
15
+· · ·3u+2i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
2
=
1
2
u
15
1
2
u
14
+ ··· + u
4
+
1
2
u
14
+ u
13
+ ··· + u 1
a
5
=
1
u
2
a
6
=
1
2
u
15
+
3
2
u
14
+ ··· u +
3
2
u
15
2u
14
+ 3u
12
+ u
11
7u
10
+ u
9
+ 6u
8
7u
6
+ 4u
4
u
3
+ u 1
a
7
=
1
2
u
15
1
2
u
14
+ ··· + u
4
+
1
2
u
15
2u
14
+ 3u
12
+ u
11
7u
10
+ u
9
+ 6u
8
7u
6
+ 4u
4
u
3
+ u 1
a
3
=
1
2
u
15
+
3
2
u
14
+ ··· u +
3
2
u
14
u
13
+ ··· + u
3
+ 1
a
1
=
u
7
2u
3
u
7
+ u
5
2u
3
+ u
a
10
=
u
u
a
12
=
u
3
u
3
+ u
a
9
=
u
5
+ u
u
5
u
3
+ u
a
8
=
u
9
+ 3u
5
+ u
u
9
u
7
+ 3u
5
2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
15
4u
14
+10u
12
18u
10
+10u
9
+24u
8
8u
7
22u
6
+12u
5
+20u
4
8u
3
8u
2
+6u2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
+ 2u
15
+ ··· + 7u + 1
c
2
, c
3
, c
5
c
6
, c
7
u
16
+ u
14
+ ··· + u + 1
c
4
, c
10
u
16
3u
15
+ ··· 3u + 2
c
8
, c
9
, c
11
c
12
u
16
+ 3u
15
+ ··· + u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
+ 34y
15
+ ··· + 3y + 1
c
2
, c
3
, c
5
c
6
, c
7
y
16
+ 2y
15
+ ··· + 7y + 1
c
4
, c
10
y
16
3y
15
+ ··· y + 4
c
8
, c
9
, c
11
c
12
y
16
+ 21y
15
+ ··· 33y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.928405 + 0.260033I
a = 0.35481 2.30363I
b = 0.773479 1.013430I
1.18138 3.90571I 4.06432 + 8.02120I
u = 0.928405 0.260033I
a = 0.35481 + 2.30363I
b = 0.773479 + 1.013430I
1.18138 + 3.90571I 4.06432 8.02120I
u = 0.650391 + 0.833172I
a = 0.136050 + 0.366350I
b = 1.39607 0.78392I
5.41244 2.99211I 2.13069 + 2.15940I
u = 0.650391 0.833172I
a = 0.136050 0.366350I
b = 1.39607 + 0.78392I
5.41244 + 2.99211I 2.13069 2.15940I
u = 0.816725 + 0.248973I
a = 0.91106 1.21568I
b = 0.198116 0.632117I
1.43484 + 0.76137I 4.76909 0.41867I
u = 0.816725 0.248973I
a = 0.91106 + 1.21568I
b = 0.198116 + 0.632117I
1.43484 0.76137I 4.76909 + 0.41867I
u = 0.970812 + 0.659855I
a = 0.66898 + 2.08400I
b = 1.47947 + 0.97775I
4.31472 + 8.49137I 0.41000 7.95274I
u = 0.970812 0.659855I
a = 0.66898 2.08400I
b = 1.47947 0.97775I
4.31472 8.49137I 0.41000 + 7.95274I
u = 0.905631 + 0.833459I
a = 0.431652 + 0.930570I
b = 1.368560 + 0.130086I
4.87488 3.10725I 2.83461 + 2.27885I
u = 0.905631 0.833459I
a = 0.431652 0.930570I
b = 1.368560 0.130086I
4.87488 + 3.10725I 2.83461 2.27885I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.915125 + 0.963980I
a = 0.269698 0.434629I
b = 1.81390 + 0.76762I
15.6936 + 4.6465I 1.09085 1.72729I
u = 0.915125 0.963980I
a = 0.269698 + 0.434629I
b = 1.81390 0.76762I
15.6936 4.6465I 1.09085 + 1.72729I
u = 0.993185 + 0.916284I
a = 0.97982 1.63330I
b = 1.84398 0.79885I
15.4310 11.5459I 0.63569 + 6.14734I
u = 0.993185 0.916284I
a = 0.97982 + 1.63330I
b = 1.84398 + 0.79885I
15.4310 + 11.5459I 0.63569 6.14734I
u = 0.195584 + 0.595042I
a = 0.107025 0.207653I
b = 0.759770 + 0.417859I
1.30282 + 0.89270I 4.55158 1.98152I
u = 0.195584 0.595042I
a = 0.107025 + 0.207653I
b = 0.759770 0.417859I
1.30282 0.89270I 4.55158 + 1.98152I
6
II. I
u
2
= hb + 1, 2u
5
a + 4u
6
+ · · · + 3a + 5, u
7
+ u
6
u
4
+ 2u
3
+ 2u
2
1i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
2
=
a
1
a
5
=
1
u
2
a
6
=
2u
5
2u
4
+ u
2
a + u
2
a 4u 2
u
2
a + u
2
1
a
7
=
2u
5
2u
4
+ 2u
2
a 4u 3
u
2
a + u
2
1
a
3
=
u
2
a + a 1
u
4
a u
2
1
a
1
=
u
6
u
4
+ 2u
2
1
u
6
+ u
5
u
4
+ 2u
2
+ u 1
a
10
=
u
u
a
12
=
u
3
u
3
+ u
a
9
=
u
5
+ u
u
5
u
3
+ u
a
8
=
u
4
u
2
+ 1
u
6
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
5
4u
4
+ 4u
2
8u 6
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
+ 3u
13
+ ··· + 27u + 4
c
2
, c
3
, c
5
c
6
, c
7
u
14
+ u
13
+ ··· + 5u + 2
c
4
, c
10
(u
7
+ u
6
u
4
+ 2u
3
+ 2u
2
1)
2
c
8
, c
9
, c
11
c
12
(u
7
+ u
6
+ 6u
5
+ 5u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
14
+ 15y
13
+ ··· + 95y + 16
c
2
, c
3
, c
5
c
6
, c
7
y
14
+ 3y
13
+ ··· + 27y + 4
c
4
, c
10
(y
7
y
6
+ 6y
5
5y
4
+ 10y
3
6y
2
+ 4y 1)
2
c
8
, c
9
, c
11
c
12
(y
7
+ 11y
6
+ 46y
5
+ 91y
4
+ 86y
3
+ 34y
2
+ 4y 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.850452 + 0.793787I
a = 0.529865 + 1.201600I
b = 1.00000
4.70993 2.92126I 1.79653 + 2.94858I
u = 0.850452 + 0.793787I
a = 0.368398 + 0.272687I
b = 1.00000
4.70993 2.92126I 1.79653 + 2.94858I
u = 0.850452 0.793787I
a = 0.529865 1.201600I
b = 1.00000
4.70993 + 2.92126I 1.79653 2.94858I
u = 0.850452 0.793787I
a = 0.368398 0.272687I
b = 1.00000
4.70993 + 2.92126I 1.79653 2.94858I
u = 0.676751 + 0.491075I
a = 1.041030 0.810129I
b = 1.00000
2.02205 + 1.83261I 0.22558 5.43914I
u = 0.676751 + 0.491075I
a = 1.15382 1.90944I
b = 1.00000
2.02205 + 1.83261I 0.22558 5.43914I
u = 0.676751 0.491075I
a = 1.041030 + 0.810129I
b = 1.00000
2.02205 1.83261I 0.22558 + 5.43914I
u = 0.676751 0.491075I
a = 1.15382 + 1.90944I
b = 1.00000
2.02205 1.83261I 0.22558 + 5.43914I
u = 0.962510 + 0.950397I
a = 0.498708 1.218380I
b = 1.00000
16.6015 + 3.4867I 1.97231 2.18600I
u = 0.962510 + 0.950397I
a = 0.487449 + 0.125376I
b = 1.00000
16.6015 + 3.4867I 1.97231 2.18600I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.962510 0.950397I
a = 0.498708 + 1.218380I
b = 1.00000
16.6015 3.4867I 1.97231 + 2.18600I
u = 0.962510 0.950397I
a = 0.487449 0.125376I
b = 1.00000
16.6015 3.4867I 1.97231 + 2.18600I
u = 0.577619
a = 2.49721 + 3.11982I
b = 1.00000
4.03510 9.98880
u = 0.577619
a = 2.49721 3.11982I
b = 1.00000
4.03510 9.98880
11
III. I
u
3
= hu
7
u
5
+ 2u
3
+ b u + 1, u
7
u
6
+ u
5
+ u
4
+ 2u
3
3u
2
+ a +
2u + 2, u
8
u
6
+ 3u
4
2u
2
+ 1i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
2
=
u
7
+ u
6
u
5
u
4
2u
3
+ 3u
2
2u 2
u
7
+ u
5
2u
3
+ u 1
a
5
=
1
u
2
a
6
=
u
6
+ u
5
u
4
+ 3u
2
+ 2u 2
u
7
+ 2u
3
a
7
=
u
7
+ u
6
+ u
5
u
4
+ 2u
3
+ 3u
2
+ 2u 2
u
7
+ 2u
3
a
3
=
u
6
u
5
u
4
+ 3u
2
2u 2
1
a
1
=
u
7
2u
3
u
7
+ u
5
2u
3
+ u
a
10
=
u
u
a
12
=
u
3
u
3
+ u
a
9
=
u
5
+ u
u
5
u
3
+ u
a
8
=
u
7
+ 2u
3
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
6
4u
4
+ 12u
2
12
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
8
c
2
, c
3
, c
5
c
6
, c
7
(u
2
+ 1)
4
c
4
, c
10
u
8
u
6
+ 3u
4
2u
2
+ 1
c
8
, c
9
(u
4
u
3
+ 3u
2
2u + 1)
2
c
11
, c
12
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
8
c
2
, c
3
, c
5
c
6
, c
7
(y + 1)
8
c
4
, c
10
(y
4
y
3
+ 3y
2
2y + 1)
2
c
8
, c
9
, c
11
c
12
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.720342 + 0.351808I
a = 2.18387 0.72950I
b = 0.493156 0.395123I
3.50087 1.41510I 7.82674 + 4.90874I
u = 0.720342 0.351808I
a = 2.18387 + 0.72950I
b = 0.493156 + 0.395123I
3.50087 + 1.41510I 7.82674 4.90874I
u = 0.720342 + 0.351808I
a = 0.27050 3.18387I
b = 1.50684 0.39512I
3.50087 + 1.41510I 7.82674 4.90874I
u = 0.720342 0.351808I
a = 0.27050 + 3.18387I
b = 1.50684 + 0.39512I
3.50087 1.41510I 7.82674 + 4.90874I
u = 0.911292 + 0.851808I
a = 0.59788 + 1.68452I
b = 2.55249 + 0.10488I
3.50087 3.16396I 4.17326 + 2.56480I
u = 0.911292 0.851808I
a = 0.59788 1.68452I
b = 2.55249 0.10488I
3.50087 + 3.16396I 4.17326 2.56480I
u = 0.911292 + 0.851808I
a = 0.684515 + 0.402116I
b = 0.552492 + 0.104877I
3.50087 + 3.16396I 4.17326 2.56480I
u = 0.911292 0.851808I
a = 0.684515 0.402116I
b = 0.552492 0.104877I
3.50087 3.16396I 4.17326 + 2.56480I
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u
14
+ 3u
13
+ ··· + 27u + 4)(u
16
+ 2u
15
+ ··· + 7u + 1)
c
2
, c
3
, c
5
c
6
, c
7
((u
2
+ 1)
4
)(u
14
+ u
13
+ ··· + 5u + 2)(u
16
+ u
14
+ ··· + u + 1)
c
4
, c
10
(u
7
+ u
6
u
4
+ 2u
3
+ 2u
2
1)
2
(u
8
u
6
+ 3u
4
2u
2
+ 1)
· (u
16
3u
15
+ ··· 3u + 2)
c
8
, c
9
(u
4
u
3
+ 3u
2
2u + 1)
2
· ((u
7
+ u
6
+ ··· + 4u + 1)
2
)(u
16
+ 3u
15
+ ··· + u + 4)
c
11
, c
12
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
· ((u
7
+ u
6
+ ··· + 4u + 1)
2
)(u
16
+ 3u
15
+ ··· + u + 4)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
8
)(y
14
+ 15y
13
+ ··· + 95y + 16)(y
16
+ 34y
15
+ ··· + 3y + 1)
c
2
, c
3
, c
5
c
6
, c
7
((y + 1)
8
)(y
14
+ 3y
13
+ ··· + 27y + 4)(y
16
+ 2y
15
+ ··· + 7y + 1)
c
4
, c
10
(y
4
y
3
+ 3y
2
2y + 1)
2
· ((y
7
y
6
+ ··· + 4y 1)
2
)(y
16
3y
15
+ ··· y + 4)
c
8
, c
9
, c
11
c
12
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
· (y
7
+ 11y
6
+ 46y
5
+ 91y
4
+ 86y
3
+ 34y
2
+ 4y 1)
2
· (y
16
+ 21y
15
+ ··· 33y + 16)
17