12n
0334
(K12n
0334
)
A knot diagram
1
Linearized knot diagam
3 6 8 7 10 2 4 12 11 6 9 8
Solving Sequence
2,7
6
3,10
11 1 5 4 8 9 12
c
6
c
2
c
10
c
1
c
5
c
4
c
7
c
9
c
12
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.23152 × 10
16
u
29
+ 1.53695 × 10
16
u
28
+ ··· + 5.84790 × 10
16
b 9.74776 × 10
15
,
4.32154 × 10
16
u
29
+ 2.87372 × 10
16
u
28
+ ··· + 1.16958 × 10
17
a 5.09997 × 10
16
, u
30
u
29
+ ··· + 7u + 2i
I
u
2
= h9a
3
u + 23a
3
a
2
u + 11a
2
+ 57au + 61b + 105a 66u 6, a
4
a
3
u + 2a
2
u + 3a
2
5au a + 2u 3,
u
2
+ 1i
I
u
3
= hu
8
u
7
+ 2u
6
2u
5
+ u
4
u
3
+ u
2
+ b u, u
7
+ u
6
+ 2u
5
+ 2u
4
+ u
3
+ u
2
+ a + u + 1,
u
9
+ 3u
7
u
6
+ 3u
5
2u
4
+ 3u
3
u
2
+ 2u 1i
* 3 irreducible components of dim
C
= 0, with total 47 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.23×10
16
u
29
+1.54×10
16
u
28
+· · ·+5.85×10
16
b9.75×10
15
, 4.32×
10
16
u
29
+2.87×10
16
u
28
+· · ·+1.17×10
17
a5.10×10
16
, u
30
u
29
+· · ·+7u+2i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
10
=
0.369495u
29
0.245705u
28
+ ··· + 14.2746u + 0.436051
0.210593u
29
0.262820u
28
+ ··· + 3.53091u + 0.166688
a
11
=
0.672620u
29
0.609580u
28
+ ··· + 19.4110u + 0.850319
0.211783u
29
0.281668u
28
+ ··· + 3.34990u + 0.288187
a
1
=
u
3
u
5
+ u
3
+ u
a
5
=
0.688243u
29
+ 0.596482u
28
+ ··· 22.1445u 4.75119
0.0998548u
29
+ 0.00973725u
28
+ ··· 4.79516u 0.887435
a
4
=
0.788098u
29
+ 0.606219u
28
+ ··· 26.9397u 5.63863
0.0998548u
29
+ 0.00973725u
28
+ ··· 4.79516u 0.887435
a
8
=
0.625597u
29
0.813840u
28
+ ··· + 3.22541u 3.26533
0.0901176u
29
0.131952u
28
+ ··· + 0.188451u 1.19971
a
9
=
0.772220u
29
1.17415u
28
+ ··· 1.69794u 6.69657
0.193509u
29
0.293937u
28
+ ··· 0.448992u 0.953828
a
12
=
1.07677u
29
+ 0.793142u
28
+ ··· 38.8926u 7.27684
0.188243u
29
+ 0.0964819u
28
+ ··· 7.64451u 1.25119
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
6673390003312773
9746501057251736
u
29
1203194374045575
2436625264312934
u
28
+ ··· +
172887881292571847
9746501057251736
u +
53741926556471299
4873250528625868
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
30
+ 5u
29
+ ··· + 75u + 4
c
2
, c
6
u
30
u
29
+ ··· + 7u + 2
c
3
, c
4
, c
7
u
30
u
29
+ ··· + 13u + 2
c
5
, c
10
u
30
2u
29
+ ··· u + 2
c
8
, c
9
, c
11
c
12
u
30
8u
29
+ ··· + 19u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
30
+ 49y
29
+ ··· 2273y + 16
c
2
, c
6
y
30
+ 5y
29
+ ··· + 75y + 4
c
3
, c
4
, c
7
y
30
+ 41y
29
+ ··· + 283y + 4
c
5
, c
10
y
30
8y
29
+ ··· + 19y + 4
c
8
, c
9
, c
11
c
12
y
30
+ 28y
29
+ ··· 721y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.698998 + 0.613459I
a = 2.39480 + 0.61262I
b = 0.15133 1.76319I
2.77724 3.85593I 9.07460 + 7.10921I
u = 0.698998 0.613459I
a = 2.39480 0.61262I
b = 0.15133 + 1.76319I
2.77724 + 3.85593I 9.07460 7.10921I
u = 0.011422 + 1.077760I
a = 0.273728 + 1.371180I
b = 0.555566 0.741416I
8.36072 + 3.13944I 5.78917 2.58972I
u = 0.011422 1.077760I
a = 0.273728 1.371180I
b = 0.555566 + 0.741416I
8.36072 3.13944I 5.78917 + 2.58972I
u = 0.108984 + 0.894375I
a = 0.301960 0.991096I
b = 0.689592 + 0.428612I
1.44382 + 1.63203I 3.48932 5.49543I
u = 0.108984 0.894375I
a = 0.301960 + 0.991096I
b = 0.689592 0.428612I
1.44382 1.63203I 3.48932 + 5.49543I
u = 0.682002 + 0.922822I
a = 0.189288 + 0.408857I
b = 0.203062 0.735831I
3.81485 + 2.30509I 0.49031 2.71546I
u = 0.682002 0.922822I
a = 0.189288 0.408857I
b = 0.203062 + 0.735831I
3.81485 2.30509I 0.49031 + 2.71546I
u = 0.755396 + 0.903984I
a = 1.66217 1.20277I
b = 0.26664 + 1.80105I
3.27475 8.23910I 1.93994 + 7.72708I
u = 0.755396 0.903984I
a = 1.66217 + 1.20277I
b = 0.26664 1.80105I
3.27475 + 8.23910I 1.93994 7.72708I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.407081 + 0.637690I
a = 0.274690 0.288008I
b = 0.208144 + 0.378027I
0.05686 + 1.46890I 0.92942 4.73947I
u = 0.407081 0.637690I
a = 0.274690 + 0.288008I
b = 0.208144 0.378027I
0.05686 1.46890I 0.92942 + 4.73947I
u = 1.029980 + 0.698288I
a = 0.453579 0.409036I
b = 0.149512 0.441012I
4.59059 0.39183I 4.29290 + 1.76865I
u = 1.029980 0.698288I
a = 0.453579 + 0.409036I
b = 0.149512 + 0.441012I
4.59059 + 0.39183I 4.29290 1.76865I
u = 1.121490 + 0.688518I
a = 0.917790 0.402386I
b = 0.92316 2.47975I
5.57907 5.57951I 5.69966 + 3.23734I
u = 1.121490 0.688518I
a = 0.917790 + 0.402386I
b = 0.92316 + 2.47975I
5.57907 + 5.57951I 5.69966 3.23734I
u = 0.951194 + 0.966858I
a = 0.344441 + 0.102557I
b = 0.246527 + 0.139595I
7.98345 3.49396I 3.58725 + 2.25604I
u = 0.951194 0.966858I
a = 0.344441 0.102557I
b = 0.246527 0.139595I
7.98345 + 3.49396I 3.58725 2.25604I
u = 1.08159 + 0.91703I
a = 1.56601 0.06152I
b = 0.44838 + 3.31749I
11.86890 + 0.24298I 9.59323 + 0.78680I
u = 1.08159 0.91703I
a = 1.56601 + 0.06152I
b = 0.44838 3.31749I
11.86890 0.24298I 9.59323 0.78680I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.83819 + 1.14876I
a = 0.494841 + 0.034426I
b = 0.393342 + 0.029742I
3.17963 6.45848I 2.96666 + 2.59326I
u = 0.83819 1.14876I
a = 0.494841 0.034426I
b = 0.393342 0.029742I
3.17963 + 6.45848I 2.96666 2.59326I
u = 0.98645 + 1.08169I
a = 1.63870 + 0.94953I
b = 0.62498 3.36593I
11.33410 + 7.25716I 8.55357 5.59796I
u = 0.98645 1.08169I
a = 1.63870 0.94953I
b = 0.62498 + 3.36593I
11.33410 7.25716I 8.55357 + 5.59796I
u = 0.85706 + 1.18834I
a = 1.22904 1.46577I
b = 1.13371 + 2.70027I
3.97939 + 12.74170I 4.00000 7.13590I
u = 0.85706 1.18834I
a = 1.22904 + 1.46577I
b = 1.13371 2.70027I
3.97939 12.74170I 4.00000 + 7.13590I
u = 0.441623 + 0.214148I
a = 2.94794 + 1.06535I
b = 0.615118 + 1.075540I
2.07762 + 1.07439I 9.76956 2.59156I
u = 0.441623 0.214148I
a = 2.94794 1.06535I
b = 0.615118 1.075540I
2.07762 1.07439I 9.76956 + 2.59156I
u = 0.040685 + 0.322181I
a = 1.65956 + 3.26961I
b = 0.661518 + 0.572597I
5.27889 3.20038I 6.37013 + 2.60565I
u = 0.040685 0.322181I
a = 1.65956 3.26961I
b = 0.661518 0.572597I
5.27889 + 3.20038I 6.37013 2.60565I
7
II.
I
u
2
= h9a
3
ua
2
u+· · ·+105a6, a
4
a
3
u+2a
2
u+3a
2
5aua+2u3, u
2
+1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
1
a
3
=
u
0
a
10
=
a
0.147541a
3
u + 0.0163934a
2
u + ··· 1.72131a + 0.0983607
a
11
=
0.147541a
3
u + 0.0163934a
2
u + ··· + 0.278689a + 0.0983607
a
a
1
=
u
u
a
5
=
0.360656a
3
u + 0.262295a
2
u + ··· + 0.459016a 0.426230
u
a
4
=
0.360656a
3
u + 0.262295a
2
u + ··· + 0.459016a 0.426230
u
a
8
=
0.0327869a
3
u + 0.114754a
2
u + ··· + 0.950820a 0.311475
1
a
9
=
0.0655738a
3
u 0.229508a
2
u + ··· 1.90164a + 2.62295
0.0819672a
3
u + 0.213115a
2
u + ··· 0.377049a 0.721311
a
12
=
0.0983607a
3
u + 0.344262a
2
u + ··· 0.147541a + 0.0655738
0.360656a
3
u 0.262295a
2
u + ··· 0.459016a + 0.426230
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4
61
a
3
u +
44
61
a
3
108
61
a
2
u
32
61
a
2
+
56
61
au +
116
61
a
296
61
u +
84
61
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
8
c
2
, c
3
, c
4
c
6
, c
7
(u
2
+ 1)
4
c
5
, c
10
u
8
u
6
+ 3u
4
2u
2
+ 1
c
8
, c
9
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
c
11
, c
12
(u
4
u
3
+ 3u
2
2u + 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
8
c
2
, c
3
, c
4
c
6
, c
7
(y + 1)
8
c
5
, c
10
(y
4
y
3
+ 3y
2
2y + 1)
2
c
8
, c
9
, c
11
c
12
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.947956 + 0.221642I
b = 1.66830 0.57345I
0.21101 + 1.41510I 3.82674 4.90874I
u = 1.000000I
a = 0.221784 + 0.813580I
b = 1.133080 + 0.038228I
6.79074 + 3.16396I 0.17326 2.56480I
u = 1.000000I
a = 0.14689 2.02011I
b = 0.57345 + 1.66830I
0.21101 1.41510I 3.82674 + 4.90874I
u = 1.000000I
a = 0.87306 + 1.98488I
b = 0.038228 1.133080I
6.79074 3.16396I 0.17326 + 2.56480I
u = 1.000000I
a = 0.947956 0.221642I
b = 1.66830 + 0.57345I
0.21101 1.41510I 3.82674 + 4.90874I
u = 1.000000I
a = 0.221784 0.813580I
b = 1.133080 0.038228I
6.79074 3.16396I 0.17326 + 2.56480I
u = 1.000000I
a = 0.14689 + 2.02011I
b = 0.57345 1.66830I
0.21101 + 1.41510I 3.82674 4.90874I
u = 1.000000I
a = 0.87306 1.98488I
b = 0.038228 + 1.133080I
6.79074 + 3.16396I 0.17326 2.56480I
11
III. I
u
3
= hu
8
u
7
+ 2u
6
2u
5
+ u
4
u
3
+ u
2
+ b u, u
7
+ u
6
+ 2u
5
+ 2u
4
+
u
3
+ u
2
+ a + u + 1, u
9
+ 3u
7
u
6
+ 3u
5
2u
4
+ 3u
3
u
2
+ 2u 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
10
=
u
7
u
6
2u
5
2u
4
u
3
u
2
u 1
u
8
+ u
7
2u
6
+ 2u
5
u
4
+ u
3
u
2
+ u
a
11
=
u
7
2u
5
2u
3
2u
u
7
+ u
5
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
5
=
u
u
a
4
=
0
u
a
8
=
1
u
2
a
9
=
u
4
u
2
1
u
4
a
12
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
6
+ 8u
4
4u
3
+ 4u
2
4u + 10
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
9
+ 6u
8
+ 15u
7
+ 23u
6
+ 27u
5
+ 24u
4
+ 15u
3
+ 7u
2
+ 2u 1
c
2
, c
3
, c
4
c
6
, c
7
u
9
+ 3u
7
u
6
+ 3u
5
2u
4
+ 3u
3
u
2
+ 2u 1
c
5
, c
10
(u
3
+ u
2
1)
3
c
8
, c
9
, c
11
c
12
(u
3
u
2
+ 2u 1)
3
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
9
6y
8
+ 3y
7
+ 23y
6
5y
5
16y
4
+ 43y
3
+ 59y
2
+ 18y 1
c
2
, c
3
, c
4
c
6
, c
7
y
9
+ 6y
8
+ 15y
7
+ 23y
6
+ 27y
5
+ 24y
4
+ 15y
3
+ 7y
2
+ 2y 1
c
5
, c
10
(y
3
y
2
+ 2y 1)
3
c
8
, c
9
, c
11
c
12
(y
3
+ 3y
2
+ 2y 1)
3
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.656619 + 0.765660I
a = 0.657957 + 0.314065I
b = 0.66369 1.45514I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.656619 0.765660I
a = 0.657957 0.314065I
b = 0.66369 + 1.45514I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.701160 + 0.628458I
a = 1.48015 0.54026I
b = 0.258224 + 0.507366I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.701160 0.628458I
a = 1.48015 + 0.54026I
b = 0.258224 0.507366I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.233800 + 1.078880I
a = 1.01500 1.42921I
b = 1.15982 + 2.09752I
1.11345 9.01951 + 0.I
u = 0.233800 1.078880I
a = 1.01500 + 1.42921I
b = 1.15982 2.09752I
1.11345 9.01951 + 0.I
u = 0.044542 + 1.394120I
a = 0.15103 + 1.46064I
b = 0.40281 2.07233I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.044542 1.394120I
a = 0.15103 1.46064I
b = 0.40281 + 2.07233I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.467600
a = 1.94416
b = 0.329789
1.11345 9.01950
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u
9
+ 6u
8
+ ··· + 2u 1)
· (u
30
+ 5u
29
+ ··· + 75u + 4)
c
2
, c
6
(u
2
+ 1)
4
(u
9
+ 3u
7
u
6
+ 3u
5
2u
4
+ 3u
3
u
2
+ 2u 1)
· (u
30
u
29
+ ··· + 7u + 2)
c
3
, c
4
, c
7
(u
2
+ 1)
4
(u
9
+ 3u
7
u
6
+ 3u
5
2u
4
+ 3u
3
u
2
+ 2u 1)
· (u
30
u
29
+ ··· + 13u + 2)
c
5
, c
10
((u
3
+ u
2
1)
3
)(u
8
u
6
+ 3u
4
2u
2
+ 1)(u
30
2u
29
+ ··· u + 2)
c
8
, c
9
(u
3
u
2
+ 2u 1)
3
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
· (u
30
8u
29
+ ··· + 19u + 4)
c
11
, c
12
(u
3
u
2
+ 2u 1)
3
(u
4
u
3
+ 3u
2
2u + 1)
2
· (u
30
8u
29
+ ··· + 19u + 4)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
8
)(y
9
6y
8
+ ··· + 18y 1)
· (y
30
+ 49y
29
+ ··· 2273y + 16)
c
2
, c
6
((y + 1)
8
)(y
9
+ 6y
8
+ ··· + 2y 1)
· (y
30
+ 5y
29
+ ··· + 75y + 4)
c
3
, c
4
, c
7
((y + 1)
8
)(y
9
+ 6y
8
+ ··· + 2y 1)
· (y
30
+ 41y
29
+ ··· + 283y + 4)
c
5
, c
10
(y
3
y
2
+ 2y 1)
3
(y
4
y
3
+ 3y
2
2y + 1)
2
· (y
30
8y
29
+ ··· + 19y + 4)
c
8
, c
9
, c
11
c
12
(y
3
+ 3y
2
+ 2y 1)
3
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
· (y
30
+ 28y
29
+ ··· 721y + 16)
17