12n
0335
(K12n
0335
)
A knot diagram
1
Linearized knot diagam
3 5 8 11 2 4 3 7 12 1 4 10
Solving Sequence
3,5
2 6
1,11
4 7 8 9 10 12
c
2
c
5
c
1
c
4
c
6
c
7
c
8
c
10
c
12
c
3
, c
9
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.35069 × 10
64
u
54
+ 3.81695 × 10
64
u
53
+ ··· + 1.37855 × 10
64
b + 9.95905 × 10
64
,
5.59560 × 10
64
u
54
+ 1.78086 × 10
65
u
53
+ ··· + 4.13566 × 10
64
a + 2.40656 × 10
66
,
u
55
3u
54
+ ··· 180u + 36i
I
u
2
= h−bau + b
2
2ba + bu au + 2b + 2u, a
2
a 1, u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 63 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.35 × 10
64
u
54
+ 3.82 × 10
64
u
53
+ · · · + 1.38 × 10
64
b + 9.96 ×
10
64
, 5.60 × 10
64
u
54
+ 1.78 × 10
65
u
53
+ · · · + 4.14 × 10
64
a + 2.41 ×
10
66
, u
55
3u
54
+ · · · 180u + 36i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
2
a
11
=
1.35301u
54
4.30610u
53
+ ··· + 353.805u 58.1904
0.979787u
54
2.76881u
53
+ ··· + 110.400u 7.22427
a
4
=
1.20076u
54
2.20679u
53
+ ··· 306.550u + 94.2856
0.569068u
54
0.988169u
53
+ ··· 149.680u + 43.2863
a
7
=
2.77967u
54
6.78822u
53
+ ··· 70.9703u + 69.9144
0.436392u
54
0.768297u
53
+ ··· 104.002u + 31.7186
a
8
=
2.34328u
54
6.01992u
53
+ ··· + 33.0317u + 38.1958
0.436392u
54
0.768297u
53
+ ··· 104.002u + 31.7186
a
9
=
2.64631u
54
8.83637u
53
+ ··· + 788.120u 127.191
0.0484147u
54
0.320036u
53
+ ··· + 86.8216u 17.2120
a
10
=
2.08439u
54
6.60302u
53
+ ··· + 525.581u 84.0141
0.459586u
54
1.41002u
53
+ ··· + 83.1692u 10.7895
a
12
=
2.48557u
54
+ 8.51354u
53
+ ··· 805.408u + 134.995
0.122323u
54
+ 0.796684u
53
+ ··· 177.994u + 38.7845
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.07522u
54
3.77605u
53
+ ··· 430.874u + 130.101
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
55
+ 23u
54
+ ··· 2664u 1296
c
2
, c
5
u
55
+ 3u
54
+ ··· 180u 36
c
3
, c
7
u
55
+ 3u
54
+ ··· + 2u
2
9
c
4
, c
11
u
55
u
54
+ ··· 4u + 1
c
6
u
55
+ 9u
54
+ ··· + 711666u 322299
c
8
u
55
+ 17u
54
+ ··· + 36u + 81
c
9
, c
10
, c
12
u
55
5u
54
+ ··· + 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
55
+ 27y
54
+ ··· + 195397920y 1679616
c
2
, c
5
y
55
+ 23y
54
+ ··· 2664y 1296
c
3
, c
7
y
55
17y
54
+ ··· + 36y 81
c
4
, c
11
y
55
+ 15y
54
+ ··· + 20y 1
c
6
y
55
77y
54
+ ··· + 1247977937268y 103876645401
c
8
y
55
+ 47y
54
+ ··· + 545940y 6561
c
9
, c
10
, c
12
y
55
45y
54
+ ··· 76y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.059953 + 1.012980I
a = 0.039284 + 0.228627I
b = 3.38648 7.92146I
3.35243 + 2.03755I 55.1037 + 12.6479I
u = 0.059953 1.012980I
a = 0.039284 0.228627I
b = 3.38648 + 7.92146I
3.35243 2.03755I 55.1037 12.6479I
u = 0.503627 + 0.897107I
a = 0.934263 0.027824I
b = 1.02333 + 1.27124I
2.25554 + 4.57545I 5.65078 7.74410I
u = 0.503627 0.897107I
a = 0.934263 + 0.027824I
b = 1.02333 1.27124I
2.25554 4.57545I 5.65078 + 7.74410I
u = 0.749649 + 0.722966I
a = 1.365230 + 0.185901I
b = 1.50650 + 0.41105I
1.75202 + 1.88837I 2.61590 0.91978I
u = 0.749649 0.722966I
a = 1.365230 0.185901I
b = 1.50650 0.41105I
1.75202 1.88837I 2.61590 + 0.91978I
u = 0.364761 + 0.993866I
a = 0.008868 + 0.879146I
b = 1.02933 1.07956I
4.91412 2.97553I 9.62258 + 3.34712I
u = 0.364761 0.993866I
a = 0.008868 0.879146I
b = 1.02933 + 1.07956I
4.91412 + 2.97553I 9.62258 3.34712I
u = 0.258557 + 1.030090I
a = 0.830582 0.163972I
b = 1.38989 0.45028I
3.67536 + 0.88537I 11.38095 + 0.I
u = 0.258557 1.030090I
a = 0.830582 + 0.163972I
b = 1.38989 + 0.45028I
3.67536 0.88537I 11.38095 + 0.I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.718519 + 0.847961I
a = 1.296050 0.245653I
b = 1.49635 0.46822I
1.59469 + 3.95590I 0. 4.38344I
u = 0.718519 0.847961I
a = 1.296050 + 0.245653I
b = 1.49635 + 0.46822I
1.59469 3.95590I 0. + 4.38344I
u = 0.177488 + 1.115120I
a = 1.338900 + 0.369569I
b = 0.511338 + 0.177719I
11.38140 0.95537I 13.23793 + 0.I
u = 0.177488 1.115120I
a = 1.338900 0.369569I
b = 0.511338 0.177719I
11.38140 + 0.95537I 13.23793 + 0.I
u = 0.715954 + 0.884530I
a = 0.021837 1.295710I
b = 0.555987 + 0.117408I
1.48173 + 1.52459I 0
u = 0.715954 0.884530I
a = 0.021837 + 1.295710I
b = 0.555987 0.117408I
1.48173 1.52459I 0
u = 0.629070 + 0.579280I
a = 0.899218 + 0.140744I
b = 0.684898 0.590344I
0.99052 1.29254I 2.78379 + 2.92308I
u = 0.629070 0.579280I
a = 0.899218 0.140744I
b = 0.684898 + 0.590344I
0.99052 + 1.29254I 2.78379 2.92308I
u = 0.962772 + 0.634354I
a = 0.348395 + 1.141660I
b = 0.848577 + 0.156761I
6.13413 3.62958I 0
u = 0.962772 0.634354I
a = 0.348395 1.141660I
b = 0.848577 0.156761I
6.13413 + 3.62958I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.072657 + 1.156240I
a = 0.250058 0.246628I
b = 0.995895 0.128359I
1.49791 2.22374I 0
u = 0.072657 1.156240I
a = 0.250058 + 0.246628I
b = 0.995895 + 0.128359I
1.49791 + 2.22374I 0
u = 0.937527 + 0.741922I
a = 0.383327 1.039020I
b = 0.900494 0.104724I
6.37472 2.61690I 0
u = 0.937527 0.741922I
a = 0.383327 + 1.039020I
b = 0.900494 + 0.104724I
6.37472 + 2.61690I 0
u = 1.152520 + 0.350922I
a = 0.578184 0.918755I
b = 1.052210 0.449986I
2.57652 8.84046I 0
u = 1.152520 0.350922I
a = 0.578184 + 0.918755I
b = 1.052210 + 0.449986I
2.57652 + 8.84046I 0
u = 0.701046 + 0.984062I
a = 0.061127 + 1.262660I
b = 0.749098 0.104477I
0.95535 7.42151I 0
u = 0.701046 0.984062I
a = 0.061127 1.262660I
b = 0.749098 + 0.104477I
0.95535 + 7.42151I 0
u = 1.159080 + 0.396377I
a = 0.586340 + 0.734811I
b = 0.989615 + 0.342386I
3.69536 + 2.42722I 0
u = 1.159080 0.396377I
a = 0.586340 0.734811I
b = 0.989615 0.342386I
3.69536 2.42722I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.203618 + 0.681460I
a = 0.591078 0.840978I
b = 0.472677 + 0.984550I
2.07887 + 0.90467I 6.07000 + 0.56339I
u = 0.203618 0.681460I
a = 0.591078 + 0.840978I
b = 0.472677 0.984550I
2.07887 0.90467I 6.07000 0.56339I
u = 0.110493 + 0.692074I
a = 0.739047 0.175124I
b = 0.665968 + 0.952652I
1.59698 1.61659I 1.44406 0.65784I
u = 0.110493 0.692074I
a = 0.739047 + 0.175124I
b = 0.665968 0.952652I
1.59698 + 1.61659I 1.44406 + 0.65784I
u = 0.801899 + 1.028120I
a = 1.117420 + 0.073109I
b = 1.48706 0.77147I
5.47096 3.75621I 0
u = 0.801899 1.028120I
a = 1.117420 0.073109I
b = 1.48706 + 0.77147I
5.47096 + 3.75621I 0
u = 0.763372 + 1.097560I
a = 1.130030 0.021844I
b = 1.57911 + 0.85143I
4.68957 + 9.94524I 0
u = 0.763372 1.097560I
a = 1.130030 + 0.021844I
b = 1.57911 0.85143I
4.68957 9.94524I 0
u = 0.132026 + 0.646971I
a = 2.61608 + 0.55117I
b = 0.941369 + 0.117297I
9.42726 + 2.36390I 1.16452 4.84130I
u = 0.132026 0.646971I
a = 2.61608 0.55117I
b = 0.941369 0.117297I
9.42726 2.36390I 1.16452 + 4.84130I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.738573 + 1.127370I
a = 0.861984 0.010078I
b = 0.82426 1.30675I
6.84994 + 8.00995I 0
u = 0.738573 1.127370I
a = 0.861984 + 0.010078I
b = 0.82426 + 1.30675I
6.84994 8.00995I 0
u = 1.085430 + 0.809644I
a = 0.259628 0.401649I
b = 0.278041 0.746527I
5.33599 1.38467I 0
u = 1.085430 0.809644I
a = 0.259628 + 0.401649I
b = 0.278041 + 0.746527I
5.33599 + 1.38467I 0
u = 0.71206 + 1.27104I
a = 1.045930 + 0.191194I
b = 1.50069 1.14574I
0.2861 + 15.4592I 0
u = 0.71206 1.27104I
a = 1.045930 0.191194I
b = 1.50069 + 1.14574I
0.2861 15.4592I 0
u = 0.74916 + 1.25256I
a = 0.978931 0.217150I
b = 1.36649 + 1.02579I
1.06335 9.19388I 0
u = 0.74916 1.25256I
a = 0.978931 + 0.217150I
b = 1.36649 1.02579I
1.06335 + 9.19388I 0
u = 0.87172 + 1.17361I
a = 0.522134 0.089230I
b = 0.540213 + 0.695522I
1.56919 4.20311I 0
u = 0.87172 1.17361I
a = 0.522134 + 0.089230I
b = 0.540213 0.695522I
1.56919 + 4.20311I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.422680
a = 1.62609
b = 1.25011
2.48655 1.11980
u = 0.383224 + 0.053506I
a = 0.13292 + 2.07512I
b = 0.541303 0.058971I
0.85477 1.49574I 2.42286 + 5.05757I
u = 0.383224 0.053506I
a = 0.13292 2.07512I
b = 0.541303 + 0.058971I
0.85477 + 1.49574I 2.42286 5.05757I
u = 0.18963 + 1.71301I
a = 0.303194 + 0.184743I
b = 0.0935061 + 0.0909681I
4.31137 3.46877I 0
u = 0.18963 1.71301I
a = 0.303194 0.184743I
b = 0.0935061 0.0909681I
4.31137 + 3.46877I 0
10
II. I
u
2
= h−bau + b
2
2ba + bu au + 2b + 2u, a
2
a 1, u
2
+ 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
1
a
6
=
u
0
a
1
=
0
1
a
11
=
a
b
a
4
=
au u
bau + u
a
7
=
2bau + bu au
ba + u + 1
a
8
=
2bau + ba + bu au u 1
ba + u + 1
a
9
=
a 1
ba + 1
a
10
=
a
b a
a
12
=
a 1
ba + a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4bau + 4u 12
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
8
c
2
, c
5
(u
2
+ 1)
4
c
3
, c
6
, c
7
(u
4
u
2
+ 1)
2
c
4
, c
11
(u
4
+ 3u
2
+ 1)
2
c
8
(u
2
+ u + 1)
4
c
9
, c
10
(u
2
+ u 1)
4
c
12
(u
2
u 1)
4
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
8
c
2
, c
5
(y + 1)
8
c
3
, c
6
, c
7
(y
2
y + 1)
4
c
4
, c
11
(y
2
+ 3y + 1)
4
c
8
(y
2
+ y + 1)
4
c
9
, c
10
, c
12
(y
2
3y + 1)
4
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.618034
b = 0.216775 0.809017I
2.63189 2.02988I 10.00000 + 3.46410I
u = 1.000000I
a = 0.618034
b = 3.01929 0.80902I
2.63189 + 2.02988I 10.00000 3.46410I
u = 1.000000I
a = 1.61803
b = 1.153270 + 0.309017I
10.52760 + 2.02988I 10.00000 3.46410I
u = 1.000000I
a = 1.61803
b = 0.082801 + 0.309017I
10.52760 2.02988I 10.00000 + 3.46410I
u = 1.000000I
a = 0.618034
b = 0.216775 + 0.809017I
2.63189 + 2.02988I 10.00000 3.46410I
u = 1.000000I
a = 0.618034
b = 3.01929 + 0.80902I
2.63189 2.02988I 10.00000 + 3.46410I
u = 1.000000I
a = 1.61803
b = 1.153270 0.309017I
10.52760 2.02988I 10.00000 + 3.46410I
u = 1.000000I
a = 1.61803
b = 0.082801 0.309017I
10.52760 + 2.02988I 10.00000 3.46410I
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u
55
+ 23u
54
+ ··· 2664u 1296)
c
2
, c
5
((u
2
+ 1)
4
)(u
55
+ 3u
54
+ ··· 180u 36)
c
3
, c
7
((u
4
u
2
+ 1)
2
)(u
55
+ 3u
54
+ ··· + 2u
2
9)
c
4
, c
11
((u
4
+ 3u
2
+ 1)
2
)(u
55
u
54
+ ··· 4u + 1)
c
6
((u
4
u
2
+ 1)
2
)(u
55
+ 9u
54
+ ··· + 711666u 322299)
c
8
((u
2
+ u + 1)
4
)(u
55
+ 17u
54
+ ··· + 36u + 81)
c
9
, c
10
((u
2
+ u 1)
4
)(u
55
5u
54
+ ··· + 4u + 1)
c
12
((u
2
u 1)
4
)(u
55
5u
54
+ ··· + 4u + 1)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
8
)(y
55
+ 27y
54
+ ··· + 1.95398 × 10
8
y 1679616)
c
2
, c
5
((y + 1)
8
)(y
55
+ 23y
54
+ ··· 2664y 1296)
c
3
, c
7
((y
2
y + 1)
4
)(y
55
17y
54
+ ··· + 36y 81)
c
4
, c
11
((y
2
+ 3y + 1)
4
)(y
55
+ 15y
54
+ ··· + 20y 1)
c
6
(y
2
y + 1)
4
· (y
55
77y
54
+ ··· + 1247977937268y 103876645401)
c
8
((y
2
+ y + 1)
4
)(y
55
+ 47y
54
+ ··· + 545940y 6561)
c
9
, c
10
, c
12
((y
2
3y + 1)
4
)(y
55
45y
54
+ ··· 76y 1)
16