12n
0337
(K12n
0337
)
A knot diagram
1
Linearized knot diagam
3 6 8 7 11 2 9 4 12 6 10 9
Solving Sequence
6,10
11
3,12
2 7 1 5 4 9 8
c
10
c
11
c
2
c
6
c
1
c
5
c
4
c
9
c
7
c
3
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h8.75045 × 10
28
u
62
+ 5.63839 × 10
29
u
61
+ ··· + 4.42036 × 10
29
b + 4.19132 × 10
29
,
8.61586 × 10
29
u
62
+ 6.95817 × 10
29
u
61
+ ··· + 2.21018 × 10
29
a + 3.02574 × 10
30
, u
63
u
62
+ ··· 10u + 1i
I
u
2
= hu
5
b + u
3
b + 2u
2
b + b
2
+ 2bu u
2
u 2, u
4
+ a 1, u
6
+ u
4
+ 2u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 75 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h8.75×10
28
u
62
+5.64×10
29
u
61
+· · ·+4.42×10
29
b+4.19×10
29
, 8.62×
10
29
u
62
+6.96×10
29
u
61
+· · ·+2.21×10
29
a+3.03×10
30
, u
63
u
62
+· · ·10u+1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
3.89826u
62
3.14824u
61
+ ··· + 86.3365u 13.6900
0.197958u
62
1.27555u
61
+ ··· + 12.6503u 0.948184
a
12
=
u
2
+ 1
u
2
a
2
=
3.89826u
62
3.14824u
61
+ ··· + 86.3365u 13.6900
0.929682u
62
1.65830u
61
+ ··· + 16.2523u 1.69821
a
7
=
1.53828u
62
0.187645u
61
+ ··· + 14.1508u 6.97201
2.72772u
62
1.67622u
61
+ ··· + 30.4294u 4.29057
a
1
=
u
6
+ u
4
+ 2u
2
+ 1
u
6
+ u
2
a
5
=
u
u
3
+ u
a
4
=
0.471410u
62
0.471626u
61
+ ··· + 16.3283u + 1.49775
2.28058u
62
0.384216u
61
+ ··· 9.13957u + 2.00704
a
9
=
u
4
+ u
2
+ 1
u
4
a
8
=
1.43450u
62
0.861770u
61
+ ··· + 27.0832u 9.69122
1.91211u
62
0.548333u
61
+ ··· + 17.6204u 2.91399
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.06158u
62
4.22142u
61
+ ··· + 98.6123u 19.1903
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
63
+ 23u
62
+ ··· 11050u 625
c
2
, c
6
u
63
u
62
+ ··· + 40u 25
c
3
, c
8
u
63
u
62
+ ··· + 2u
2
1
c
4
u
63
3u
62
+ ··· + 736u 53
c
5
, c
10
u
63
+ u
62
+ ··· 10u 1
c
7
u
63
35u
62
+ ··· + 4u 1
c
9
, c
11
, c
12
u
63
23u
62
+ ··· + 38u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
63
+ 47y
62
+ ··· 20571250y 390625
c
2
, c
6
y
63
+ 23y
62
+ ··· 11050y 625
c
3
, c
8
y
63
35y
62
+ ··· + 4y 1
c
4
y
63
+ 49y
62
+ ··· + 209280y 2809
c
5
, c
10
y
63
+ 23y
62
+ ··· + 38y 1
c
7
y
63
7y
62
+ ··· + 4y 1
c
9
, c
11
, c
12
y
63
+ 39y
62
+ ··· + 682y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.615481 + 0.782024I
a = 0.924724 + 0.192341I
b = 0.085512 1.194750I
2.81026 3.12410I 1.80668 + 2.74088I
u = 0.615481 0.782024I
a = 0.924724 0.192341I
b = 0.085512 + 1.194750I
2.81026 + 3.12410I 1.80668 2.74088I
u = 0.817617 + 0.593503I
a = 1.176330 0.407742I
b = 0.666725 0.147698I
0.28869 4.27274I 0. + 2.20858I
u = 0.817617 0.593503I
a = 1.176330 + 0.407742I
b = 0.666725 + 0.147698I
0.28869 + 4.27274I 0. 2.20858I
u = 0.822477 + 0.507948I
a = 0.501572 1.068710I
b = 0.080964 0.498715I
4.20996 3.12624I 4.99490 + 1.04203I
u = 0.822477 0.507948I
a = 0.501572 + 1.068710I
b = 0.080964 + 0.498715I
4.20996 + 3.12624I 4.99490 1.04203I
u = 0.654440 + 0.706606I
a = 1.004440 0.278481I
b = 0.521492 + 0.799483I
3.29416 2.07147I 0.14477 + 3.47358I
u = 0.654440 0.706606I
a = 1.004440 + 0.278481I
b = 0.521492 0.799483I
3.29416 + 2.07147I 0.14477 3.47358I
u = 0.822755 + 0.498425I
a = 1.246610 + 0.349007I
b = 0.388160 + 0.165493I
4.25689 + 0.43803I 5.01449 + 0.38960I
u = 0.822755 0.498425I
a = 1.246610 0.349007I
b = 0.388160 0.165493I
4.25689 0.43803I 5.01449 0.38960I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.358362 + 0.992150I
a = 0.074839 0.827034I
b = 0.15062 1.56941I
4.17413 + 3.04921I 11.13137 4.86659I
u = 0.358362 0.992150I
a = 0.074839 + 0.827034I
b = 0.15062 + 1.56941I
4.17413 3.04921I 11.13137 + 4.86659I
u = 0.581922 + 0.742342I
a = 0.988921 0.922896I
b = 0.40243 1.83245I
2.47100 + 1.06449I 2.36761 0.85729I
u = 0.581922 0.742342I
a = 0.988921 + 0.922896I
b = 0.40243 + 1.83245I
2.47100 1.06449I 2.36761 + 0.85729I
u = 0.867209 + 0.606173I
a = 1.202120 + 0.457899I
b = 0.693184 + 0.345225I
2.65432 + 9.47231I 4.00000 5.30483I
u = 0.867209 0.606173I
a = 1.202120 0.457899I
b = 0.693184 0.345225I
2.65432 9.47231I 4.00000 + 5.30483I
u = 0.142481 + 0.926913I
a = 1.282780 0.021406I
b = 0.772343 0.206200I
0.767985 + 0.824168I 9.41506 + 0.65151I
u = 0.142481 0.926913I
a = 1.282780 + 0.021406I
b = 0.772343 + 0.206200I
0.767985 0.824168I 9.41506 0.65151I
u = 0.700176 + 0.840660I
a = 0.765140 + 0.730947I
b = 0.23555 + 1.51474I
4.60599 + 2.68345I 0
u = 0.700176 0.840660I
a = 0.765140 0.730947I
b = 0.23555 1.51474I
4.60599 2.68345I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.628609 + 0.908068I
a = 0.219058 + 0.696182I
b = 1.37912 + 1.43255I
2.41121 1.77391I 0
u = 0.628609 0.908068I
a = 0.219058 0.696182I
b = 1.37912 1.43255I
2.41121 + 1.77391I 0
u = 0.026642 + 0.893006I
a = 0.482850 0.230070I
b = 1.76148 0.77429I
0.96850 2.33689I 10.51063 + 3.88561I
u = 0.026642 0.893006I
a = 0.482850 + 0.230070I
b = 1.76148 + 0.77429I
0.96850 + 2.33689I 10.51063 3.88561I
u = 0.603817 + 0.944430I
a = 1.014530 0.651522I
b = 0.14337 1.71884I
1.81973 5.79600I 0
u = 0.603817 0.944430I
a = 1.014530 + 0.651522I
b = 0.14337 + 1.71884I
1.81973 + 5.79600I 0
u = 0.052552 + 1.129890I
a = 0.775773 0.796782I
b = 1.07864 2.15641I
5.89708 3.19125I 0
u = 0.052552 1.129890I
a = 0.775773 + 0.796782I
b = 1.07864 + 2.15641I
5.89708 + 3.19125I 0
u = 0.767293 + 0.838686I
a = 0.536133 + 0.727624I
b = 0.38652 + 1.38050I
4.75625 + 2.66334I 0
u = 0.767293 0.838686I
a = 0.536133 0.727624I
b = 0.38652 1.38050I
4.75625 2.66334I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.791545 + 0.338366I
a = 0.47232 1.36375I
b = 0.146940 0.685183I
4.21373 + 5.84305I 4.20006 5.43025I
u = 0.791545 0.338366I
a = 0.47232 + 1.36375I
b = 0.146940 + 0.685183I
4.21373 5.84305I 4.20006 + 5.43025I
u = 0.641851 + 0.958734I
a = 0.290568 0.785458I
b = 1.28323 2.11096I
2.52965 + 7.13795I 0
u = 0.641851 0.958734I
a = 0.290568 + 0.785458I
b = 1.28323 + 2.11096I
2.52965 7.13795I 0
u = 0.706658 + 0.446411I
a = 0.295145 + 1.196460I
b = 0.201963 + 0.567576I
0.70382 1.36878I 1.16247 + 2.76782I
u = 0.706658 0.446411I
a = 0.295145 1.196460I
b = 0.201963 0.567576I
0.70382 + 1.36878I 1.16247 2.76782I
u = 0.096687 + 1.163890I
a = 0.845889 + 0.838885I
b = 1.03193 + 2.21147I
9.39173 + 8.34057I 0
u = 0.096687 1.163890I
a = 0.845889 0.838885I
b = 1.03193 2.21147I
9.39173 8.34057I 0
u = 0.003658 + 1.168730I
a = 0.699048 + 0.871689I
b = 0.99139 + 2.10096I
10.19250 1.37204I 0
u = 0.003658 1.168730I
a = 0.699048 0.871689I
b = 0.99139 2.10096I
10.19250 + 1.37204I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.796964 + 0.882251I
a = 0.538356 0.100627I
b = 0.233347 0.784599I
3.04388 0.13688I 0
u = 0.796964 0.882251I
a = 0.538356 + 0.100627I
b = 0.233347 + 0.784599I
3.04388 + 0.13688I 0
u = 0.752341 + 0.920918I
a = 0.786716 + 0.409689I
b = 0.013060 + 1.198020I
4.50104 + 3.08347I 0
u = 0.752341 0.920918I
a = 0.786716 0.409689I
b = 0.013060 1.198020I
4.50104 3.08347I 0
u = 0.804318 + 0.888939I
a = 0.159292 0.605167I
b = 0.615657 1.226000I
3.02941 5.85741I 0
u = 0.804318 0.888939I
a = 0.159292 + 0.605167I
b = 0.615657 + 1.226000I
3.02941 + 5.85741I 0
u = 0.617710 + 1.047470I
a = 0.859697 0.364923I
b = 0.97715 1.06171I
2.35789 3.68565I 0
u = 0.617710 1.047470I
a = 0.859697 + 0.364923I
b = 0.97715 + 1.06171I
2.35789 + 3.68565I 0
u = 0.567021 + 1.085240I
a = 0.986354 + 0.368127I
b = 1.018770 + 0.967931I
6.42352 0.87285I 0
u = 0.567021 1.085240I
a = 0.986354 0.368127I
b = 1.018770 0.967931I
6.42352 + 0.87285I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.688188 + 1.054390I
a = 0.386516 0.981629I
b = 0.54971 2.74649I
1.09750 + 9.92639I 0
u = 0.688188 1.054390I
a = 0.386516 + 0.981629I
b = 0.54971 + 2.74649I
1.09750 9.92639I 0
u = 0.650788 + 1.081400I
a = 0.309480 + 1.022320I
b = 0.43116 + 2.53815I
5.99769 5.93570I 0
u = 0.650788 1.081400I
a = 0.309480 1.022320I
b = 0.43116 2.53815I
5.99769 + 5.93570I 0
u = 0.655982 + 1.078790I
a = 0.836188 + 0.475018I
b = 1.03372 + 1.10446I
5.91225 + 8.64566I 0
u = 0.655982 1.078790I
a = 0.836188 0.475018I
b = 1.03372 1.10446I
5.91225 8.64566I 0
u = 0.314549 + 0.662120I
a = 0.218311 + 0.670532I
b = 0.011835 + 0.612906I
0.267822 1.158260I 3.61517 + 5.66198I
u = 0.314549 0.662120I
a = 0.218311 0.670532I
b = 0.011835 0.612906I
0.267822 + 1.158260I 3.61517 5.66198I
u = 0.710541 + 1.068660I
a = 0.425206 + 1.016740I
b = 0.42500 + 2.83258I
4.0664 15.3392I 0
u = 0.710541 1.068660I
a = 0.425206 1.016740I
b = 0.42500 2.83258I
4.0664 + 15.3392I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.516415
a = 1.18250
b = 0.0216347
1.52695 6.20940
u = 0.178816 + 0.052588I
a = 0.97689 + 5.20866I
b = 0.848518 + 0.314174I
1.74489 2.05954I 4.07565 + 4.15680I
u = 0.178816 0.052588I
a = 0.97689 5.20866I
b = 0.848518 0.314174I
1.74489 + 2.05954I 4.07565 4.15680I
11
II.
I
u
2
= hu
5
b +u
3
b +2u
2
b +b
2
+ 2bu u
2
u 2, u
4
+ a 1, u
6
+ u
4
+ 2u
2
+ 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
u
4
+ 1
b
a
12
=
u
2
+ 1
u
2
a
2
=
u
4
+ 1
u
4
u
2
+ b 1
a
7
=
u
5
+ u
3
+ 2u
u
5
b + bu
a
1
=
0
u
4
u
2
1
a
5
=
u
u
3
+ u
a
4
=
u
5
b u
5
u
3
+ bu
u
3
b + 2u
3
+ u
2
+ b + 3u
a
9
=
u
4
+ u
2
+ 1
u
4
a
8
=
u
5
b + u
5
+ u
3
b + bu + u
2u
5
b u
5
2u
3
+ bu u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
4u
3
4bu + 4u
2
+ 8
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
12
c
2
, c
6
(u
2
+ 1)
6
c
3
, c
4
, c
8
(u
4
u
2
+ 1)
3
c
5
, c
10
(u
6
+ u
4
+ 2u
2
+ 1)
2
c
7
(u
2
+ u + 1)
6
c
9
(u
3
+ u
2
+ 2u + 1)
4
c
11
, c
12
(u
3
u
2
+ 2u 1)
4
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
12
c
2
, c
6
(y + 1)
12
c
3
, c
4
, c
8
(y
2
y + 1)
6
c
5
, c
10
(y
3
+ y
2
+ 2y + 1)
4
c
7
(y
2
+ y + 1)
6
c
9
, c
11
, c
12
(y
3
+ 3y
2
+ 2y 1)
4
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.744862 + 0.877439I
a = 0.662359 0.562280I
b = 1.06984 1.15137I
4.66906 0.79824I 1.50976 0.48465I
u = 0.744862 + 0.877439I
a = 0.662359 0.562280I
b = 0.07740 2.12527I
4.66906 4.85801I 1.50976 + 6.44355I
u = 0.744862 0.877439I
a = 0.662359 + 0.562280I
b = 1.06984 + 1.15137I
4.66906 + 0.79824I 1.50976 + 0.48465I
u = 0.744862 0.877439I
a = 0.662359 + 0.562280I
b = 0.07740 + 2.12527I
4.66906 + 4.85801I 1.50976 6.44355I
u = 0.744862 + 0.877439I
a = 0.662359 + 0.562280I
b = 0.507560 + 0.489013I
4.66906 + 4.85801I 1.50976 6.44355I
u = 0.744862 + 0.877439I
a = 0.662359 + 0.562280I
b = 0.63968 + 1.46291I
4.66906 + 0.79824I 1.50976 + 0.48465I
u = 0.744862 0.877439I
a = 0.662359 0.562280I
b = 0.507560 0.489013I
4.66906 4.85801I 1.50976 + 6.44355I
u = 0.744862 0.877439I
a = 0.662359 0.562280I
b = 0.63968 1.46291I
4.66906 0.79824I 1.50976 0.48465I
u = 0.754878I
a = 1.32472
b = 0.577399 0.662359I
0.53148 2.02988I 5.01951 + 3.46410I
u = 0.754878I
a = 1.32472
b = 1.71708 0.66236I
0.53148 + 2.02988I 5.01951 3.46410I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.754878I
a = 1.32472
b = 0.577399 + 0.662359I
0.53148 + 2.02988I 5.01951 3.46410I
u = 0.754878I
a = 1.32472
b = 1.71708 + 0.66236I
0.53148 2.02988I 5.01951 + 3.46410I
16
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
12
)(u
63
+ 23u
62
+ ··· 11050u 625)
c
2
, c
6
((u
2
+ 1)
6
)(u
63
u
62
+ ··· + 40u 25)
c
3
, c
8
((u
4
u
2
+ 1)
3
)(u
63
u
62
+ ··· + 2u
2
1)
c
4
((u
4
u
2
+ 1)
3
)(u
63
3u
62
+ ··· + 736u 53)
c
5
, c
10
((u
6
+ u
4
+ 2u
2
+ 1)
2
)(u
63
+ u
62
+ ··· 10u 1)
c
7
((u
2
+ u + 1)
6
)(u
63
35u
62
+ ··· + 4u 1)
c
9
((u
3
+ u
2
+ 2u + 1)
4
)(u
63
23u
62
+ ··· + 38u + 1)
c
11
, c
12
((u
3
u
2
+ 2u 1)
4
)(u
63
23u
62
+ ··· + 38u + 1)
17
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
12
)(y
63
+ 47y
62
+ ··· 2.05713 × 10
7
y 390625)
c
2
, c
6
((y + 1)
12
)(y
63
+ 23y
62
+ ··· 11050y 625)
c
3
, c
8
((y
2
y + 1)
6
)(y
63
35y
62
+ ··· + 4y 1)
c
4
((y
2
y + 1)
6
)(y
63
+ 49y
62
+ ··· + 209280y 2809)
c
5
, c
10
((y
3
+ y
2
+ 2y + 1)
4
)(y
63
+ 23y
62
+ ··· + 38y 1)
c
7
((y
2
+ y + 1)
6
)(y
63
7y
62
+ ··· + 4y 1)
c
9
, c
11
, c
12
((y
3
+ 3y
2
+ 2y 1)
4
)(y
63
+ 39y
62
+ ··· + 682y 1)
18