12n
0338
(K12n
0338
)
A knot diagram
1
Linearized knot diagam
3 6 8 9 2 11 3 4 6 12 7 10
Solving Sequence
3,7
8 4 9
5,11
12 6 2 1 10
c
7
c
3
c
8
c
4
c
11
c
6
c
2
c
1
c
10
c
5
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−3004101246716u
20
373089817451u
19
+ ··· + 21082954445324b + 26346240192572,
1831272589986u
20
+ 602119374746u
19
+ ··· + 21082954445324a 24452295430928,
u
21
+ u
20
+ ··· + 8u 8i
I
u
2
= h4a
2
u + 6a
2
+ b 1, 4a
3
+ 4au 6a 7u + 10, u
2
2i
I
v
1
= ha, b + v + 1, v
3
+ 2v
2
+ v + 1i
* 3 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−3.00×10
12
u
20
3.73×10
11
u
19
+· · ·+2.11×10
13
b+2.63×10
13
, 1.83×
10
12
u
20
+6.02×10
11
u
19
+· · ·+2.11×10
13
a2.45×10
13
, u
21
+u
20
+· · ·+8u8i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
4
+ 2u
2
a
5
=
u
3
2u
u
5
3u
3
+ u
a
11
=
0.0868603u
20
0.0285595u
19
+ ··· 0.459641u + 1.15981
0.142490u
20
+ 0.0176963u
19
+ ··· + 2.40462u 1.24965
a
12
=
0.229350u
20
0.0462558u
19
+ ··· 2.86426u + 2.40946
0.142490u
20
+ 0.0176963u
19
+ ··· + 2.40462u 1.24965
a
6
=
0.138686u
20
+ 0.00718333u
19
+ ··· 0.505659u + 1.36119
0.242033u
20
+ 0.00703747u
19
+ ··· 5.49406u + 2.13835
a
2
=
0.128794u
20
+ 0.0122843u
19
+ ··· 3.05410u + 1.34108
0.237410u
20
0.0250130u
19
+ ··· 2.82817u + 2.12013
a
1
=
0.128794u
20
+ 0.0122843u
19
+ ··· 3.05410u + 1.34108
0.111694u
20
0.00741087u
19
+ ··· 0.669180u + 0.991499
a
10
=
0.121424u
20
0.0196218u
19
+ ··· 2.92331u + 2.24622
0.185607u
20
0.0285721u
19
+ ··· 2.65413u + 1.26626
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
29083336030791
21082954445324
u
20
503291539209
21082954445324
u
19
+ ··· +
136967234579540
5270738611331
u
144077080803222
5270738611331
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
21
+ 36u
20
+ ··· + 11991u + 529
c
2
, c
5
u
21
+ 4u
20
+ ··· 59u 23
c
3
, c
4
, c
7
c
8
u
21
u
20
+ ··· + 8u + 8
c
6
, c
11
u
21
2u
20
+ ··· + 8u
2
1
c
9
u
21
+ 2u
20
+ ··· 144u 52
c
10
, c
12
u
21
+ 10u
20
+ ··· + 16u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
21
92y
20
+ ··· + 39622923y 279841
c
2
, c
5
y
21
36y
20
+ ··· + 11991y 529
c
3
, c
4
, c
7
c
8
y
21
35y
20
+ ··· + 320y 64
c
6
, c
11
y
21
10y
20
+ ··· + 16y 1
c
9
y
21
66y
20
+ ··· + 76376y 2704
c
10
, c
12
y
21
+ 6y
20
+ ··· + 96y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.901926 + 0.051407I
a = 1.58428 + 0.44230I
b = 0.929270 0.621178I
0.70179 + 4.44296I 15.1059 6.6514I
u = 0.901926 0.051407I
a = 1.58428 0.44230I
b = 0.929270 + 0.621178I
0.70179 4.44296I 15.1059 + 6.6514I
u = 0.487980 + 0.535998I
a = 1.29130 1.86784I
b = 0.972602 + 0.217979I
3.41098 + 0.72478I 18.1754 4.1507I
u = 0.487980 0.535998I
a = 1.29130 + 1.86784I
b = 0.972602 0.217979I
3.41098 0.72478I 18.1754 + 4.1507I
u = 0.667009 + 0.250056I
a = 0.473812 0.352817I
b = 0.746002 0.517025I
0.131566 + 0.215455I 13.55030 + 1.35945I
u = 0.667009 0.250056I
a = 0.473812 + 0.352817I
b = 0.746002 + 0.517025I
0.131566 0.215455I 13.55030 1.35945I
u = 1.336150 + 0.286473I
a = 0.480443 0.210578I
b = 0.219656 + 0.684964I
6.45258 + 0.58096I 15.0688 0.0562I
u = 1.336150 0.286473I
a = 0.480443 + 0.210578I
b = 0.219656 0.684964I
6.45258 0.58096I 15.0688 + 0.0562I
u = 1.46037
a = 1.04497
b = 0.429188
6.73694 12.3530
u = 1.37773 + 0.63713I
a = 1.24070 1.07467I
b = 1.177670 + 0.522691I
9.24475 5.31786I 17.8058 + 4.0813I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.37773 0.63713I
a = 1.24070 + 1.07467I
b = 1.177670 0.522691I
9.24475 + 5.31786I 17.8058 4.0813I
u = 0.007014 + 0.428132I
a = 0.157773 + 1.318050I
b = 0.876187 0.694943I
2.12758 2.67655I 5.20055 + 2.49560I
u = 0.007014 0.428132I
a = 0.157773 1.318050I
b = 0.876187 + 0.694943I
2.12758 + 2.67655I 5.20055 2.49560I
u = 0.380480
a = 0.651164
b = 0.349133
0.576083 17.0820
u = 1.73579 + 0.22895I
a = 1.43373 + 0.00630I
b = 1.176150 + 0.419094I
10.01720 + 3.13008I 18.2978 3.1992I
u = 1.73579 0.22895I
a = 1.43373 0.00630I
b = 1.176150 0.419094I
10.01720 3.13008I 18.2978 + 3.1992I
u = 1.90238 + 0.14731I
a = 0.0278466 + 0.0602262I
b = 0.516255 + 1.062480I
18.6129 3.3460I 15.4445 + 0.4593I
u = 1.90238 0.14731I
a = 0.0278466 0.0602262I
b = 0.516255 1.062480I
18.6129 + 3.3460I 15.4445 0.4593I
u = 1.89336 + 0.24852I
a = 1.27473 0.71223I
b = 1.194710 + 0.746952I
18.7399 + 9.8858I 17.0280 4.3210I
u = 1.89336 0.24852I
a = 1.27473 + 0.71223I
b = 1.194710 0.746952I
18.7399 9.8858I 17.0280 + 4.3210I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 2.06112
a = 1.49678
b = 1.40668
13.3737 19.2100
7
II. I
u
2
= h4a
2
u + 6a
2
+ b 1, 4a
3
+ 4au 6a 7u + 10, u
2
2i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
2
a
4
=
u
u
a
9
=
1
0
a
5
=
0
u
a
11
=
a
4a
2
u 6a
2
+ 1
a
12
=
4a
2
u + 6a
2
+ a 1
4a
2
u 6a
2
+ 1
a
6
=
1
2
u
4a
2
u + 6a
2
+ au + 2a 1
a
2
=
1
2
u
4a
2
u + 6a
2
+ au + 2a + u 1
a
1
=
1
2
u
4a
2
u + 6a
2
+ au + 2a 1
a
10
=
3a
2
u 4a
2
au a +
1
2
u 1
au + 2a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16a
2
u 24a
2
16
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
6
c
2
(u + 1)
6
c
3
, c
4
, c
7
c
8
(u
2
2)
3
c
6
(u
3
u
2
+ 1)
2
c
9
, c
10
(u
3
u
2
+ 2u 1)
2
c
11
(u
3
+ u
2
1)
2
c
12
(u
3
+ u
2
+ 2u + 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
6
c
3
, c
4
, c
7
c
8
(y 2)
6
c
6
, c
11
(y
3
y
2
+ 2y 1)
2
c
9
, c
10
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41421
a = 0.388001
b = 0.754878
7.69319 23.0200
u = 1.41421
a = 0.194000 + 0.164688I
b = 0.877439 0.744862I
3.55561 + 2.82812I 16.4902 2.9794I
u = 1.41421
a = 0.194000 0.164688I
b = 0.877439 + 0.744862I
3.55561 2.82812I 16.4902 + 2.9794I
u = 1.41421
a = 1.13072 + 0.95987I
b = 0.877439 0.744862I
3.55561 + 2.82812I 16.4902 2.9794I
u = 1.41421
a = 1.13072 0.95987I
b = 0.877439 + 0.744862I
3.55561 2.82812I 16.4902 + 2.9794I
u = 1.41421
a = 2.26144
b = 0.754878
7.69319 23.0200
11
III. I
v
1
= ha, b + v + 1, v
3
+ 2v
2
+ v + 1i
(i) Arc colorings
a
3
=
v
0
a
7
=
1
0
a
8
=
1
0
a
4
=
v
0
a
9
=
1
0
a
5
=
v
0
a
11
=
0
v 1
a
12
=
v + 1
v 1
a
6
=
1
v
2
2v 1
a
2
=
v 1
v
2
+ 2v + 1
a
1
=
1
v
2
+ 2v + 1
a
10
=
v
2
2v
v
2
+ v 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v
2
+ 6v 14
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
4
, c
7
c
8
u
3
c
5
(u + 1)
3
c
6
u
3
+ u
2
1
c
9
, c
12
u
3
+ u
2
+ 2u + 1
c
10
u
3
u
2
+ 2u 1
c
11
u
3
u
2
+ 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
3
c
3
, c
4
, c
7
c
8
y
3
c
6
, c
11
y
3
y
2
+ 2y 1
c
9
, c
10
, c
12
y
3
+ 3y
2
+ 2y 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.122561 + 0.744862I
a = 0
b = 0.877439 0.744862I
1.37919 2.82812I 16.8946 + 3.7388I
v = 0.122561 0.744862I
a = 0
b = 0.877439 + 0.744862I
1.37919 + 2.82812I 16.8946 3.7388I
v = 1.75488
a = 0
b = 0.754878
2.75839 12.2110
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
21
+ 36u
20
+ ··· + 11991u + 529)
c
2
((u 1)
3
)(u + 1)
6
(u
21
+ 4u
20
+ ··· 59u 23)
c
3
, c
4
, c
7
c
8
u
3
(u
2
2)
3
(u
21
u
20
+ ··· + 8u + 8)
c
5
((u 1)
6
)(u + 1)
3
(u
21
+ 4u
20
+ ··· 59u 23)
c
6
((u
3
u
2
+ 1)
2
)(u
3
+ u
2
1)(u
21
2u
20
+ ··· + 8u
2
1)
c
9
((u
3
u
2
+ 2u 1)
2
)(u
3
+ u
2
+ 2u + 1)(u
21
+ 2u
20
+ ··· 144u 52)
c
10
((u
3
u
2
+ 2u 1)
3
)(u
21
+ 10u
20
+ ··· + 16u + 1)
c
11
(u
3
u
2
+ 1)(u
3
+ u
2
1)
2
(u
21
2u
20
+ ··· + 8u
2
1)
c
12
((u
3
+ u
2
+ 2u + 1)
3
)(u
21
+ 10u
20
+ ··· + 16u + 1)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
21
92y
20
+ ··· + 3.96229 × 10
7
y 279841)
c
2
, c
5
((y 1)
9
)(y
21
36y
20
+ ··· + 11991y 529)
c
3
, c
4
, c
7
c
8
y
3
(y 2)
6
(y
21
35y
20
+ ··· + 320y 64)
c
6
, c
11
((y
3
y
2
+ 2y 1)
3
)(y
21
10y
20
+ ··· + 16y 1)
c
9
((y
3
+ 3y
2
+ 2y 1)
3
)(y
21
66y
20
+ ··· + 76376y 2704)
c
10
, c
12
((y
3
+ 3y
2
+ 2y 1)
3
)(y
21
+ 6y
20
+ ··· + 96y 1)
17