12n
0342
(K12n
0342
)
A knot diagram
1
Linearized knot diagam
3 6 10 9 2 10 12 3 4 1 7 11
Solving Sequence
3,10 4,6
7 2 1 11 5 9 12 8
c
3
c
6
c
2
c
1
c
10
c
5
c
9
c
12
c
7
c
4
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.22257 × 10
23
u
34
+ 1.20633 × 10
24
u
33
+ ··· + 9.94460 × 10
24
b + 2.05358 × 10
25
,
5.94554 × 10
24
u
34
9.98345 × 10
24
u
33
+ ··· + 3.97784 × 10
25
a 1.87822 × 10
26
, u
35
u
34
+ ··· + 16u + 8i
I
u
2
= hb + 1, 4a
3
+ 2a
2
u 4a u, u
2
+ 2i
I
v
1
= ha, b 1, v
3
v
2
+ 2v 1i
* 3 irreducible components of dim
C
= 0, with total 44 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−2.22×10
23
u
34
+1.21×10
24
u
33
+· · ·+9.94×10
24
b+2.05×10
25
, 5.95×
10
24
u
34
9.98×10
24
u
33
+· · ·+3.98×10
25
a1.88×10
26
, u
35
u
34
+· · ·+16u+8i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
6
=
0.149467u
34
+ 0.250977u
33
+ ··· + 0.744011u + 4.72171
0.0223495u
34
0.121305u
33
+ ··· 3.13828u 2.06502
a
7
=
0.149467u
34
+ 0.250977u
33
+ ··· + 0.744011u + 4.72171
0.0135884u
34
0.0414490u
33
+ ··· 2.70986u 1.25294
a
2
=
0.135878u
34
+ 0.292426u
33
+ ··· + 3.45387u + 5.97465
0.0244551u
34
0.00480744u
33
+ ··· + 1.29212u + 0.000559791
a
1
=
0.111423u
34
+ 0.287618u
33
+ ··· + 4.74599u + 5.97521
0.0244551u
34
0.00480744u
33
+ ··· + 1.29212u + 0.000559791
a
11
=
0.182308u
34
0.0553187u
33
+ ··· + 19.9927u + 4.90487
0.169723u
34
+ 0.180211u
33
+ ··· 4.99372u 0.555765
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
u
u
3
+ u
a
12
=
0.146821u
34
0.205755u
33
+ ··· + 3.25395u 3.12378
0.115099u
34
+ 0.0771834u
33
+ ··· 4.79628u 1.53754
a
8
=
u
3
2u
u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
14744603574080800564971959
19889209336976177776682620
u
34
+
19140376741824556567023511
19889209336976177776682620
u
33
+
···
13143547959375290290172530
994460466848808888834131
u +
1519825404502265762057644
4972302334244044444170655
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
35
+ 8u
34
+ ··· 52u + 1
c
2
, c
5
u
35
+ 4u
34
+ ··· 4u + 1
c
3
, c
4
, c
9
u
35
u
34
+ ··· + 16u + 8
c
6
u
35
2u
34
+ ··· + 21u + 3
c
7
, c
11
u
35
+ 2u
34
+ ··· + 9u + 3
c
8
u
35
+ u
34
+ ··· + 480u + 200
c
10
, c
12
u
35
14u
34
+ ··· + 129u 9
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
35
+ 48y
34
+ ··· + 1020y 1
c
2
, c
5
y
35
8y
34
+ ··· 52y 1
c
3
, c
4
, c
9
y
35
+ 49y
34
+ ··· 768y 64
c
6
y
35
54y
34
+ ··· 15y 9
c
7
, c
11
y
35
14y
34
+ ··· + 129y 9
c
8
y
35
+ 133y
34
+ ··· 12598400y 40000
c
10
, c
12
y
35
+ 18y
34
+ ··· + 2313y 81
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.001709 + 0.955912I
a = 0.185156 0.791460I
b = 0.661252 + 0.559258I
1.60959 + 1.37990I 0.61653 3.70044I
u = 0.001709 0.955912I
a = 0.185156 + 0.791460I
b = 0.661252 0.559258I
1.60959 1.37990I 0.61653 + 3.70044I
u = 0.457643 + 0.944024I
a = 0.498093 1.222730I
b = 0.873919 + 0.740811I
1.28798 + 3.57056I 1.83989 3.72840I
u = 0.457643 0.944024I
a = 0.498093 + 1.222730I
b = 0.873919 0.740811I
1.28798 3.57056I 1.83989 + 3.72840I
u = 0.578123 + 1.001790I
a = 0.641074 + 1.123880I
b = 0.937353 0.867983I
2.89503 8.89111I 0.41854 + 7.86310I
u = 0.578123 1.001790I
a = 0.641074 1.123880I
b = 0.937353 + 0.867983I
2.89503 + 8.89111I 0.41854 7.86310I
u = 0.280567 + 1.198240I
a = 0.212983 + 0.307706I
b = 0.848880 0.653452I
2.89532 + 2.93605I 1.67114 3.26620I
u = 0.280567 1.198240I
a = 0.212983 0.307706I
b = 0.848880 + 0.653452I
2.89532 2.93605I 1.67114 + 3.26620I
u = 0.746902 + 0.064874I
a = 0.763197 + 0.046917I
b = 0.618050 + 0.742602I
0.31975 4.37952I 1.83091 + 6.07452I
u = 0.746902 0.064874I
a = 0.763197 0.046917I
b = 0.618050 0.742602I
0.31975 + 4.37952I 1.83091 6.07452I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.353706 + 1.218390I
a = 0.474249 + 0.899612I
b = 0.572481 0.845888I
6.57185 2.11496I 5.70868 + 2.44246I
u = 0.353706 1.218390I
a = 0.474249 0.899612I
b = 0.572481 + 0.845888I
6.57185 + 2.11496I 5.70868 2.44246I
u = 0.398585 + 0.473638I
a = 0.800117 0.238876I
b = 0.139739 + 0.561536I
1.46027 + 0.77126I 3.61366 0.98435I
u = 0.398585 0.473638I
a = 0.800117 + 0.238876I
b = 0.139739 0.561536I
1.46027 0.77126I 3.61366 + 0.98435I
u = 0.090108 + 0.598555I
a = 1.184960 + 0.064358I
b = 1.219850 + 0.040491I
3.56638 2.55876I 1.13575 + 2.02591I
u = 0.090108 0.598555I
a = 1.184960 0.064358I
b = 1.219850 0.040491I
3.56638 + 2.55876I 1.13575 2.02591I
u = 0.031695 + 1.407050I
a = 0.911900 + 0.239123I
b = 0.046000 0.170713I
1.93564 + 2.80926I 0
u = 0.031695 1.407050I
a = 0.911900 0.239123I
b = 0.046000 + 0.170713I
1.93564 2.80926I 0
u = 0.576386 + 0.100273I
a = 0.859064 + 0.075571I
b = 0.794836 + 0.430575I
1.361170 + 0.009026I 6.02384 1.12650I
u = 0.576386 0.100273I
a = 0.859064 0.075571I
b = 0.794836 0.430575I
1.361170 0.009026I 6.02384 + 1.12650I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.07940 + 1.54042I
a = 0.1203980 + 0.0430251I
b = 1.303940 0.164109I
3.74701 1.80891I 0
u = 0.07940 1.54042I
a = 0.1203980 0.0430251I
b = 1.303940 + 0.164109I
3.74701 + 1.80891I 0
u = 0.020066 + 0.420369I
a = 3.70274 0.63177I
b = 0.763223 + 0.037247I
4.12675 + 2.92147I 3.70844 4.07635I
u = 0.020066 0.420369I
a = 3.70274 + 0.63177I
b = 0.763223 0.037247I
4.12675 2.92147I 3.70844 + 4.07635I
u = 0.361397
a = 0.932708
b = 0.810295
1.03588 12.2760
u = 0.14043 + 1.72815I
a = 0.16477 + 1.41522I
b = 1.14266 0.93268I
10.72680 + 6.05251I 0
u = 0.14043 1.72815I
a = 0.16477 1.41522I
b = 1.14266 + 0.93268I
10.72680 6.05251I 0
u = 0.18174 + 1.73920I
a = 0.077993 1.391040I
b = 1.23438 + 0.93163I
12.4359 12.0719I 0
u = 0.18174 1.73920I
a = 0.077993 + 1.391040I
b = 1.23438 0.93163I
12.4359 + 12.0719I 0
u = 0.00142 + 1.75473I
a = 0.393349 + 1.254280I
b = 0.860192 1.095830I
11.66250 + 1.36680I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.00142 1.75473I
a = 0.393349 1.254280I
b = 0.860192 + 1.095830I
11.66250 1.36680I 0
u = 0.05090 + 1.79450I
a = 0.401616 1.156030I
b = 0.78741 + 1.23198I
13.9358 + 4.2732I 0
u = 0.05090 1.79450I
a = 0.401616 + 1.156030I
b = 0.78741 1.23198I
13.9358 4.2732I 0
u = 0.08516 + 1.80955I
a = 0.231921 1.248780I
b = 1.08426 + 1.14113I
17.6851 4.1242I 0
u = 0.08516 1.80955I
a = 0.231921 + 1.248780I
b = 1.08426 1.14113I
17.6851 + 4.1242I 0
8
II. I
u
2
= hb + 1, 4a
3
+ 2a
2
u 4a u, u
2
+ 2i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
2
a
6
=
a
1
a
7
=
a
2a 1
a
2
=
a + 1
1
a
1
=
a
1
a
11
=
a
2
u
au + u
a
5
=
1
0
a
9
=
u
u
a
12
=
a
2
u a
1
2
u
2a
2
2a 1
a
8
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8a
2
4au + 4
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
6
c
2
(u + 1)
6
c
3
, c
4
, c
8
c
9
(u
2
+ 2)
3
c
6
, c
12
(u
3
u
2
+ 2u 1)
2
c
7
(u
3
+ u
2
1)
2
c
10
(u
3
+ u
2
+ 2u + 1)
2
c
11
(u
3
u
2
+ 1)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
6
c
3
, c
4
, c
8
c
9
(y + 2)
6
c
6
, c
10
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
c
7
, c
11
(y
3
y
2
+ 2y 1)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.414210I
a = 0.924288 0.152084I
b = 1.00000
0.26574 + 2.82812I 3.50976 2.97945I
u = 1.414210I
a = 0.924288 0.152084I
b = 1.00000
0.26574 2.82812I 3.50976 + 2.97945I
u = 1.414210I
a = 0.402938I
b = 1.00000
4.40332 3.01950
u = 1.414210I
a = 0.924288 + 0.152084I
b = 1.00000
0.26574 2.82812I 3.50976 + 2.97945I
u = 1.414210I
a = 0.924288 + 0.152084I
b = 1.00000
0.26574 + 2.82812I 3.50976 2.97945I
u = 1.414210I
a = 0.402938I
b = 1.00000
4.40332 3.01950
12
III. I
v
1
= ha, b 1, v
3
v
2
+ 2v 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
v
0
a
4
=
1
0
a
6
=
0
1
a
7
=
v
2
1
a
2
=
1
1
a
1
=
0
1
a
11
=
v
v
a
5
=
1
0
a
9
=
v
0
a
12
=
v
2
v
2
1
a
8
=
v
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10v
2
6v + 6
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
4
, c
8
c
9
u
3
c
5
(u + 1)
3
c
6
, c
10
u
3
+ u
2
+ 2u + 1
c
7
u
3
u
2
+ 1
c
11
u
3
+ u
2
1
c
12
u
3
u
2
+ 2u 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
3
c
3
, c
4
, c
8
c
9
y
3
c
6
, c
10
, c
12
y
3
+ 3y
2
+ 2y 1
c
7
, c
11
y
3
y
2
+ 2y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.215080 + 1.307140I
a = 0
b = 1.00000
4.66906 + 2.82812I 11.91407 2.22005I
v = 0.215080 1.307140I
a = 0
b = 1.00000
4.66906 2.82812I 11.91407 + 2.22005I
v = 0.569840
a = 0
b = 1.00000
0.531480 5.82810
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
35
+ 8u
34
+ ··· 52u + 1)
c
2
((u 1)
3
)(u + 1)
6
(u
35
+ 4u
34
+ ··· 4u + 1)
c
3
, c
4
, c
9
u
3
(u
2
+ 2)
3
(u
35
u
34
+ ··· + 16u + 8)
c
5
((u 1)
6
)(u + 1)
3
(u
35
+ 4u
34
+ ··· 4u + 1)
c
6
((u
3
u
2
+ 2u 1)
2
)(u
3
+ u
2
+ 2u + 1)(u
35
2u
34
+ ··· + 21u + 3)
c
7
(u
3
u
2
+ 1)(u
3
+ u
2
1)
2
(u
35
+ 2u
34
+ ··· + 9u + 3)
c
8
u
3
(u
2
+ 2)
3
(u
35
+ u
34
+ ··· + 480u + 200)
c
10
((u
3
+ u
2
+ 2u + 1)
3
)(u
35
14u
34
+ ··· + 129u 9)
c
11
((u
3
u
2
+ 1)
2
)(u
3
+ u
2
1)(u
35
+ 2u
34
+ ··· + 9u + 3)
c
12
((u
3
u
2
+ 2u 1)
3
)(u
35
14u
34
+ ··· + 129u 9)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
35
+ 48y
34
+ ··· + 1020y 1)
c
2
, c
5
((y 1)
9
)(y
35
8y
34
+ ··· 52y 1)
c
3
, c
4
, c
9
y
3
(y + 2)
6
(y
35
+ 49y
34
+ ··· 768y 64)
c
6
((y
3
+ 3y
2
+ 2y 1)
3
)(y
35
54y
34
+ ··· 15y 9)
c
7
, c
11
((y
3
y
2
+ 2y 1)
3
)(y
35
14y
34
+ ··· + 129y 9)
c
8
y
3
(y + 2)
6
(y
35
+ 133y
34
+ ··· 1.25984 × 10
7
y 40000)
c
10
, c
12
((y
3
+ 3y
2
+ 2y 1)
3
)(y
35
+ 18y
34
+ ··· + 2313y 81)
18