12n
0343
(K12n
0343
)
A knot diagram
1
Linearized knot diagam
3 6 7 8 2 11 5 4 6 12 7 10
Solving Sequence
5,7 8,11
12 4 9 3 6 2 1 10
c
7
c
11
c
4
c
8
c
3
c
6
c
2
c
1
c
10
c
5
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h2.35414 × 10
25
u
37
+ 6.36686 × 10
22
u
36
+ ··· + 1.08506 × 10
26
b + 7.17457 × 10
26
,
6.03496 × 10
25
u
37
5.08818 × 10
25
u
36
+ ··· + 1.08506 × 10
26
a 2.36548 × 10
27
, u
38
+ u
37
+ ··· + 48u + 8i
I
u
2
= h4a
2
u + 2a
2
+ 9b 9, 4a
3
+ 4au 2a 5u 2, u
2
+ 2i
I
v
1
= ha, b + v + 1, v
3
+ 2v
2
+ v + 1i
* 3 irreducible components of dim
C
= 0, with total 47 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h2.35×10
25
u
37
+6.37×10
22
u
36
+· · ·+1.09×10
26
b+7.17×10
26
, 6.03×
10
25
u
37
5.09×10
25
u
36
+· · ·+1.09×10
26
a2.37×10
27
, u
38
+u
37
+· · ·+48u+8i
(i) Arc colorings
a
5
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
11
=
0.556188u
37
+ 0.468931u
36
+ ··· + 66.0065u + 21.8004
0.216959u
37
0.000586775u
36
+ ··· 20.1029u 6.61215
a
12
=
0.773147u
37
+ 0.469518u
36
+ ··· + 86.1094u + 28.4126
0.216959u
37
0.000586775u
36
+ ··· 20.1029u 6.61215
a
4
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
4
2u
2
a
3
=
u
3
2u
u
3
+ u
a
6
=
0.540457u
37
+ 0.513997u
36
+ ··· + 61.5142u + 18.9792
0.118184u
37
0.103841u
36
+ ··· 10.8806u 1.99927
a
2
=
0.931000u
37
0.423758u
36
+ ··· 46.4113u 16.9685
0.272358u
37
+ 0.0136024u
36
+ ··· 4.22233u 0.0113747
a
1
=
1.34851u
37
0.494264u
36
+ ··· 50.4295u 19.4015
0.448295u
37
+ 0.0937407u
36
+ ··· + 2.84945u + 2.20997
a
10
=
0.237267u
37
0.770027u
36
+ ··· 6.76734u + 5.06203
0.216015u
37
+ 0.558969u
36
+ ··· + 14.6047u + 0.926935
(ii) Obstruction class = 1
(iii) Cusp Shapes =
213942583101129059255880827
108505904310727076649467996
u
37
+
149904830321107825585617651
108505904310727076649467996
u
36
+
··· +
5023310390844651983501342066
27126476077681769162366999
u +
1400899338503733927958392044
27126476077681769162366999
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
38
+ 10u
37
+ ··· 24u + 1
c
2
, c
5
u
38
+ 4u
37
+ ··· + 4u 1
c
3
u
38
u
37
+ ··· 16u + 8
c
4
, c
7
, c
8
u
38
+ u
37
+ ··· + 48u + 8
c
6
, c
11
u
38
2u
37
+ ··· + u 3
c
9
u
38
+ 2u
37
+ ··· 3029u 7419
c
10
, c
12
u
38
+ 8u
37
+ ··· + 85u + 9
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
38
+ 46y
37
+ ··· + 1128y + 1
c
2
, c
5
y
38
10y
37
+ ··· + 24y + 1
c
3
y
38
53y
37
+ ··· + 896y + 64
c
4
, c
7
, c
8
y
38
+ 31y
37
+ ··· 512y + 64
c
6
, c
11
y
38
8y
37
+ ··· 85y + 9
c
9
y
38
+ 120y
37
+ ··· 2146915177y + 55041561
c
10
, c
12
y
38
+ 48y
37
+ ··· + 1091y + 81
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.053800 + 0.148639I
a = 0.35198 1.75546I
b = 0.976993 + 0.905951I
12.2690 7.2289I 0.96626 + 4.68407I
u = 1.053800 0.148639I
a = 0.35198 + 1.75546I
b = 0.976993 0.905951I
12.2690 + 7.2289I 0.96626 4.68407I
u = 0.057390 + 0.931497I
a = 0.49812 + 1.63735I
b = 0.893541 0.823917I
0.10554 3.06762I 6.46786 + 2.97828I
u = 0.057390 0.931497I
a = 0.49812 1.63735I
b = 0.893541 + 0.823917I
0.10554 + 3.06762I 6.46786 2.97828I
u = 1.064480 + 0.094759I
a = 0.73343 1.41153I
b = 0.912968 + 0.941319I
12.47990 + 0.43824I 0.562427 0.044649I
u = 1.064480 0.094759I
a = 0.73343 + 1.41153I
b = 0.912968 0.941319I
12.47990 0.43824I 0.562427 + 0.044649I
u = 0.156341 + 1.111710I
a = 1.23758 + 0.87855I
b = 0.929752 0.586434I
1.21085 + 3.08073I 5.55249 3.17627I
u = 0.156341 1.111710I
a = 1.23758 0.87855I
b = 0.929752 + 0.586434I
1.21085 3.08073I 5.55249 + 3.17627I
u = 0.191591 + 1.141470I
a = 1.71195 + 0.26865I
b = 1.018780 + 0.030482I
4.76428 2.22122I 10.55897 + 3.42071I
u = 0.191591 1.141470I
a = 1.71195 0.26865I
b = 1.018780 0.030482I
4.76428 + 2.22122I 10.55897 3.42071I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.271471 + 0.749945I
a = 0.032046 0.267481I
b = 0.626757 0.614277I
0.20728 + 1.53818I 4.56900 2.28483I
u = 0.271471 0.749945I
a = 0.032046 + 0.267481I
b = 0.626757 + 0.614277I
0.20728 1.53818I 4.56900 + 2.28483I
u = 0.418841 + 1.156790I
a = 0.417466 0.176902I
b = 0.386654 + 0.764550I
0.11970 + 3.73317I 2.97329 3.30525I
u = 0.418841 1.156790I
a = 0.417466 + 0.176902I
b = 0.386654 0.764550I
0.11970 3.73317I 2.97329 + 3.30525I
u = 0.714927 + 0.180259I
a = 0.324913 1.250580I
b = 0.617135 + 0.730511I
3.04719 + 0.49757I 1.21153 1.20838I
u = 0.714927 0.180259I
a = 0.324913 + 1.250580I
b = 0.617135 0.730511I
3.04719 0.49757I 1.21153 + 1.20838I
u = 0.227184 + 0.682533I
a = 0.429035 + 0.360906I
b = 0.320049 0.507052I
0.238421 + 1.266880I 2.42303 5.08329I
u = 0.227184 0.682533I
a = 0.429035 0.360906I
b = 0.320049 + 0.507052I
0.238421 1.266880I 2.42303 + 5.08329I
u = 0.092432 + 1.311290I
a = 0.14750 1.68723I
b = 0.688190 + 0.376073I
6.50773 1.47983I 9.20328 + 4.48160I
u = 0.092432 1.311290I
a = 0.14750 + 1.68723I
b = 0.688190 0.376073I
6.50773 + 1.47983I 9.20328 4.48160I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.366037 + 1.277380I
a = 1.32644 1.19862I
b = 1.025390 + 0.488331I
1.99066 8.34590I 7.38920 + 8.20539I
u = 0.366037 1.277380I
a = 1.32644 + 1.19862I
b = 1.025390 0.488331I
1.99066 + 8.34590I 7.38920 8.20539I
u = 0.669684 + 0.020164I
a = 0.022217 + 1.347390I
b = 0.937251 0.595896I
1.98177 4.45651I 1.06472 + 6.47147I
u = 0.669684 0.020164I
a = 0.022217 1.347390I
b = 0.937251 + 0.595896I
1.98177 + 4.45651I 1.06472 6.47147I
u = 0.618417 + 1.229390I
a = 0.511319 0.554883I
b = 0.923330 + 0.927636I
8.97672 + 1.36657I 4.00000 + 0.I
u = 0.618417 1.229390I
a = 0.511319 + 0.554883I
b = 0.923330 0.927636I
8.97672 1.36657I 4.00000 + 0.I
u = 0.590971 + 1.277150I
a = 0.48725 1.50500I
b = 0.961686 + 0.907689I
8.85183 + 5.38651I 0
u = 0.590971 1.277150I
a = 0.48725 + 1.50500I
b = 0.961686 0.907689I
8.85183 5.38651I 0
u = 0.02483 + 1.43079I
a = 0.637356 + 0.570357I
b = 0.863543 0.756976I
1.89195 + 2.85204I 4.00000 + 0.I
u = 0.02483 1.43079I
a = 0.637356 0.570357I
b = 0.863543 + 0.756976I
1.89195 2.85204I 4.00000 + 0.I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.03651 + 1.47301I
a = 1.199870 + 0.246838I
b = 0.661912 + 0.244654I
7.07448 + 0.98863I 0
u = 0.03651 1.47301I
a = 1.199870 0.246838I
b = 0.661912 0.244654I
7.07448 0.98863I 0
u = 0.50808 + 1.40664I
a = 0.592702 + 0.296009I
b = 0.857340 0.944975I
7.77909 + 6.04150I 0
u = 0.50808 1.40664I
a = 0.592702 0.296009I
b = 0.857340 + 0.944975I
7.77909 6.04150I 0
u = 0.48076 + 1.42977I
a = 0.81361 + 1.56632I
b = 1.004820 0.868136I
7.2987 12.7112I 0
u = 0.48076 1.42977I
a = 0.81361 1.56632I
b = 1.004820 + 0.868136I
7.2987 + 12.7112I 0
u = 0.406334
a = 0.579971
b = 0.878349
1.62488 3.64530
u = 0.328792
a = 4.54970
b = 0.587341
2.40058 5.69880
8
II. I
u
2
= h4a
2
u + 2a
2
+ 9b 9, 4a
3
+ 4au 2a 5u 2, u
2
+ 2i
(i) Arc colorings
a
5
=
0
u
a
7
=
1
0
a
8
=
1
2
a
11
=
a
4
9
a
2
u
2
9
a
2
+ 1
a
12
=
4
9
a
2
u +
2
9
a
2
+ a 1
4
9
a
2
u
2
9
a
2
+ 1
a
4
=
u
u
a
9
=
1
0
a
3
=
0
u
a
6
=
1
2
u
4
9
a
2
u +
2
9
a
2
+
1
3
au +
2
3
a 1
a
2
=
1
2
u
4
9
a
2
u +
1
3
au + ··· +
2
3
a 1
a
1
=
1
2
u
4
9
a
2
u +
2
9
a
2
+
1
3
au +
2
3
a 1
a
10
=
1
9
a
2
u
1
3
au + ··· +
1
3
a 1
1
3
au +
2
3
a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
16
9
a
2
u
8
9
a
2
8
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
6
c
2
(u + 1)
6
c
3
, c
4
, c
7
c
8
(u
2
+ 2)
3
c
6
(u
3
u
2
+ 1)
2
c
9
, c
10
(u
3
u
2
+ 2u 1)
2
c
11
(u
3
+ u
2
1)
2
c
12
(u
3
+ u
2
+ 2u + 1)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
6
c
3
, c
4
, c
7
c
8
(y + 2)
6
c
6
, c
11
(y
3
y
2
+ 2y 1)
2
c
9
, c
10
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.414210I
a = 0.264767 1.030640I
b = 0.877439 + 0.744862I
3.55561 2.82812I 8.49024 + 2.97945I
u = 1.414210I
a = 1.059950 + 0.093921I
b = 0.877439 0.744862I
3.55561 + 2.82812I 8.49024 2.97945I
u = 1.414210I
a = 1.32472 + 0.93672I
b = 0.754878
7.69319 15.0195 + 0.I
u = 1.414210I
a = 0.264767 + 1.030640I
b = 0.877439 0.744862I
3.55561 + 2.82812I 8.49024 2.97945I
u = 1.414210I
a = 1.059950 0.093921I
b = 0.877439 + 0.744862I
3.55561 2.82812I 8.49024 + 2.97945I
u = 1.414210I
a = 1.32472 0.93672I
b = 0.754878
7.69319 15.0195 + 0.I
12
III. I
v
1
= ha, b + v + 1, v
3
+ 2v
2
+ v + 1i
(i) Arc colorings
a
5
=
v
0
a
7
=
1
0
a
8
=
1
0
a
11
=
0
v 1
a
12
=
v + 1
v 1
a
4
=
v
0
a
9
=
1
0
a
3
=
v
0
a
6
=
1
v
2
2v 1
a
2
=
v 1
v
2
+ 2v + 1
a
1
=
1
v
2
+ 2v + 1
a
10
=
v
2
2v
v
2
+ v 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v
2
+ 2v 2
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
4
, c
7
c
8
u
3
c
5
(u + 1)
3
c
6
u
3
+ u
2
1
c
9
, c
12
u
3
+ u
2
+ 2u + 1
c
10
u
3
u
2
+ 2u 1
c
11
u
3
u
2
+ 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
3
c
3
, c
4
, c
7
c
8
y
3
c
6
, c
11
y
3
y
2
+ 2y 1
c
9
, c
10
, c
12
y
3
+ 3y
2
+ 2y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.122561 + 0.744862I
a = 0
b = 0.877439 0.744862I
1.37919 2.82812I 0.08593 + 2.22005I
v = 0.122561 0.744862I
a = 0
b = 0.877439 + 0.744862I
1.37919 + 2.82812I 0.08593 2.22005I
v = 1.75488
a = 0
b = 0.754878
2.75839 17.8280
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
38
+ 10u
37
+ ··· 24u + 1)
c
2
((u 1)
3
)(u + 1)
6
(u
38
+ 4u
37
+ ··· + 4u 1)
c
3
u
3
(u
2
+ 2)
3
(u
38
u
37
+ ··· 16u + 8)
c
4
, c
7
, c
8
u
3
(u
2
+ 2)
3
(u
38
+ u
37
+ ··· + 48u + 8)
c
5
((u 1)
6
)(u + 1)
3
(u
38
+ 4u
37
+ ··· + 4u 1)
c
6
((u
3
u
2
+ 1)
2
)(u
3
+ u
2
1)(u
38
2u
37
+ ··· + u 3)
c
9
((u
3
u
2
+ 2u 1)
2
)(u
3
+ u
2
+ 2u + 1)(u
38
+ 2u
37
+ ··· 3029u 7419)
c
10
((u
3
u
2
+ 2u 1)
3
)(u
38
+ 8u
37
+ ··· + 85u + 9)
c
11
(u
3
u
2
+ 1)(u
3
+ u
2
1)
2
(u
38
2u
37
+ ··· + u 3)
c
12
((u
3
+ u
2
+ 2u + 1)
3
)(u
38
+ 8u
37
+ ··· + 85u + 9)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
38
+ 46y
37
+ ··· + 1128y + 1)
c
2
, c
5
((y 1)
9
)(y
38
10y
37
+ ··· + 24y + 1)
c
3
y
3
(y + 2)
6
(y
38
53y
37
+ ··· + 896y + 64)
c
4
, c
7
, c
8
y
3
(y + 2)
6
(y
38
+ 31y
37
+ ··· 512y + 64)
c
6
, c
11
((y
3
y
2
+ 2y 1)
3
)(y
38
8y
37
+ ··· 85y + 9)
c
9
(y
3
+ 3y
2
+ 2y 1)
3
· (y
38
+ 120y
37
+ ··· 2146915177y + 55041561)
c
10
, c
12
((y
3
+ 3y
2
+ 2y 1)
3
)(y
38
+ 48y
37
+ ··· + 1091y + 81)
18