12n
0344
(K12n
0344
)
A knot diagram
1
Linearized knot diagam
3 6 8 7 2 11 3 4 12 6 9 10
Solving Sequence
3,7
8 4
9,11
6 2 1 5 10 12
c
7
c
3
c
8
c
6
c
2
c
1
c
5
c
10
c
12
c
4
, c
9
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.57884 × 10
37
u
43
+ 4.19415 × 10
37
u
42
+ ··· + 3.14492 × 10
36
b + 2.00463 × 10
38
,
5.51340 × 10
37
u
43
1.47280 × 10
38
u
42
+ ··· + 3.14492 × 10
36
a 7.82161 × 10
38
, u
44
3u
43
+ ··· 36u + 4i
I
u
2
= hau + b + 2a + 1, 2a
2
au + 2a + 2u 3, u
2
2i
I
v
1
= ha, b + v 2, v
2
3v + 1i
* 3 irreducible components of dim
C
= 0, with total 50 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.58 × 10
37
u
43
+ 4.19 × 10
37
u
42
+ · · · + 3.14 × 10
36
b + 2.00 ×
10
38
, 5.51 × 10
37
u
43
1.47 × 10
38
u
42
+ · · · + 3.14 × 10
36
a 7.82 ×
10
38
, u
44
3u
43
+ · · · 36u + 4i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
4
2u
2
a
11
=
17.5312u
43
+ 46.8311u
42
+ ··· 1316.37u + 248.706
5.02029u
43
13.3363u
42
+ ··· + 367.657u 63.7420
a
6
=
3.47461u
43
10.7515u
42
+ ··· + 355.136u 74.5401
1.68885u
43
+ 5.62072u
42
+ ··· 173.747u + 30.1506
a
2
=
9.86564u
43
+ 26.8155u
42
+ ··· 755.031u + 138.369
4.70217u
43
+ 10.4432u
42
+ ··· 226.148u + 33.6781
a
1
=
9.86564u
43
+ 26.8155u
42
+ ··· 755.031u + 138.369
4.03012u
43
+ 8.38511u
42
+ ··· 165.479u + 22.5523
a
5
=
u
3
+ 2u
u
3
+ u
a
10
=
19.4067u
43
+ 52.8978u
42
+ ··· 1495.34u + 274.133
4.36737u
43
+ 8.86394u
42
+ ··· 164.017u + 21.4464
a
12
=
15.0159u
43
+ 40.6500u
42
+ ··· 1164.20u + 225.930
5.45610u
43
13.6789u
42
+ ··· + 357.423u 61.0333
(ii) Obstruction class = 1
(iii) Cusp Shapes = 58.5401u
43
+ 159.424u
42
+ ··· 4534.07u + 846.150
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
44
+ 45u
43
+ ··· + 4203u + 81
c
2
, c
5
u
44
+ 3u
43
+ ··· + 21u 9
c
3
, c
7
, c
8
u
44
3u
43
+ ··· 36u + 4
c
4
u
44
+ 9u
43
+ ··· + 1500u 964
c
6
, c
10
u
44
+ 2u
43
+ ··· + 10u + 1
c
9
, c
11
, c
12
u
44
+ 4u
43
+ ··· 18u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
44
85y
43
+ ··· 6110883y + 6561
c
2
, c
5
y
44
45y
43
+ ··· 4203y + 81
c
3
, c
7
, c
8
y
44
39y
43
+ ··· 368y + 16
c
4
y
44
+ 21y
43
+ ··· 41187888y + 929296
c
6
, c
10
y
44
12y
43
+ ··· 58y + 1
c
9
, c
11
, c
12
y
44
36y
43
+ ··· 242y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.361562 + 0.932667I
a = 0.23727 1.40400I
b = 0.961486 1.024300I
4.54866 9.17617I 5.81808 + 6.48451I
u = 0.361562 0.932667I
a = 0.23727 + 1.40400I
b = 0.961486 + 1.024300I
4.54866 + 9.17617I 5.81808 6.48451I
u = 0.242419 + 0.963914I
a = 0.542404 + 0.771039I
b = 0.650253 + 0.479584I
2.03227 + 3.85207I 10.41827 8.61488I
u = 0.242419 0.963914I
a = 0.542404 0.771039I
b = 0.650253 0.479584I
2.03227 3.85207I 10.41827 + 8.61488I
u = 0.155342 + 0.896950I
a = 0.31935 + 1.38694I
b = 0.99704 + 1.03670I
8.52514 3.75610I 2.09209 + 2.89832I
u = 0.155342 0.896950I
a = 0.31935 1.38694I
b = 0.99704 1.03670I
8.52514 + 3.75610I 2.09209 2.89832I
u = 1.125730 + 0.043899I
a = 0.058942 + 0.745233I
b = 0.556341 + 0.553872I
1.99922 0.04818I 6.00000 + 0.I
u = 1.125730 0.043899I
a = 0.058942 0.745233I
b = 0.556341 0.553872I
1.99922 + 0.04818I 6.00000 + 0.I
u = 0.851420 + 0.746270I
a = 0.677609 0.190566I
b = 0.609425 0.874938I
3.05540 + 3.53185I 6.00000 + 0.I
u = 0.851420 0.746270I
a = 0.677609 + 0.190566I
b = 0.609425 + 0.874938I
3.05540 3.53185I 6.00000 + 0.I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.060206 + 0.789681I
a = 0.420124 1.337940I
b = 1.05150 1.02729I
4.31168 + 1.72166I 4.04968 1.22187I
u = 0.060206 0.789681I
a = 0.420124 + 1.337940I
b = 1.05150 + 1.02729I
4.31168 1.72166I 4.04968 + 1.22187I
u = 1.104880 + 0.498321I
a = 0.424315 + 0.083138I
b = 0.625620 + 1.104260I
5.61992 1.18304I 0
u = 1.104880 0.498321I
a = 0.424315 0.083138I
b = 0.625620 1.104260I
5.61992 + 1.18304I 0
u = 1.22068
a = 1.07819
b = 1.88874
10.3320 0
u = 1.218830 + 0.333934I
a = 1.13833 0.87054I
b = 1.31850 0.66505I
0.76043 + 2.33473I 0
u = 1.218830 0.333934I
a = 1.13833 + 0.87054I
b = 1.31850 + 0.66505I
0.76043 2.33473I 0
u = 1.271900 + 0.268067I
a = 0.553133 1.124420I
b = 0.895901 0.644934I
2.75377 4.58010I 0
u = 1.271900 0.268067I
a = 0.553133 + 1.124420I
b = 0.895901 + 0.644934I
2.75377 + 4.58010I 0
u = 1.305420 + 0.064505I
a = 1.20456 + 0.91583I
b = 0.813618 + 0.359887I
5.20530 0.47373I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.305420 0.064505I
a = 1.20456 0.91583I
b = 0.813618 0.359887I
5.20530 + 0.47373I 0
u = 1.310900 + 0.166284I
a = 0.028578 + 0.886239I
b = 0.526233 + 0.907268I
5.87917 + 2.87968I 0
u = 1.310900 0.166284I
a = 0.028578 0.886239I
b = 0.526233 0.907268I
5.87917 2.87968I 0
u = 1.310400 + 0.345353I
a = 0.233101 0.138958I
b = 0.79762 1.32164I
0.02123 5.81626I 0
u = 1.310400 0.345353I
a = 0.233101 + 0.138958I
b = 0.79762 + 1.32164I
0.02123 + 5.81626I 0
u = 1.39785
a = 8.91764
b = 0.188474
4.90257 0
u = 0.006322 + 0.581193I
a = 0.89655 1.33079I
b = 0.503249 0.484782I
1.17226 + 1.37524I 0.82630 4.37313I
u = 0.006322 0.581193I
a = 0.89655 + 1.33079I
b = 0.503249 + 0.484782I
1.17226 1.37524I 0.82630 + 4.37313I
u = 1.37514 + 0.39616I
a = 0.881677 + 1.000200I
b = 1.24438 + 0.87011I
3.70647 + 8.39508I 0
u = 1.37514 0.39616I
a = 0.881677 1.000200I
b = 1.24438 0.87011I
3.70647 8.39508I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.33260 + 0.53021I
a = 0.126765 0.487206I
b = 0.626528 0.301390I
5.26881 + 2.02524I 0
u = 1.33260 0.53021I
a = 0.126765 + 0.487206I
b = 0.626528 + 0.301390I
5.26881 2.02524I 0
u = 1.45079
a = 0.972042
b = 0.251576
3.37301 0
u = 1.45928
a = 0.521642
b = 1.51795
13.6404 0
u = 1.41359 + 0.38694I
a = 0.320048 + 0.993129I
b = 0.997773 + 0.724464I
7.26218 8.61162I 0
u = 1.41359 0.38694I
a = 0.320048 0.993129I
b = 0.997773 0.724464I
7.26218 + 8.61162I 0
u = 1.48503 + 0.37724I
a = 0.730260 1.019420I
b = 1.20624 0.98697I
1.34332 + 13.91980I 0
u = 1.48503 0.37724I
a = 0.730260 + 1.019420I
b = 1.20624 + 0.98697I
1.34332 13.91980I 0
u = 0.115716 + 0.402697I
a = 0.38670 + 2.62883I
b = 0.377022 + 0.479190I
1.42746 0.71018I 6.25077 1.25816I
u = 0.115716 0.402697I
a = 0.38670 2.62883I
b = 0.377022 0.479190I
1.42746 + 0.71018I 6.25077 + 1.25816I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.339286
a = 1.00783
b = 1.53932
7.49147 26.0080
u = 0.302786
a = 0.689575
b = 0.583905
0.759214 14.0520
u = 0.266557
a = 9.48986
b = 0.525421
0.455563 39.4620
u = 1.76844
a = 0.0279231
b = 0.581616
6.40427 0
9
II. I
u
2
= hau + b + 2a + 1, 2a
2
au + 2a + 2u 3, u
2
2i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
2
a
4
=
u
u
a
9
=
1
0
a
11
=
a
au 2a 1
a
6
=
1
2
u
au + 2a + 2
a
2
=
1
2
u
au + 2a + u + 2
a
1
=
1
2
u
au + 2a + 2
a
5
=
0
u
a
10
=
au + 2a +
1
2
u
au + 2a + 2
a
12
=
au a 1
au 2a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
4
c
2
(u + 1)
4
c
3
, c
4
, c
7
c
8
(u
2
2)
2
c
6
, c
11
, c
12
(u
2
+ u 1)
2
c
9
, c
10
(u
2
u 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
4
c
3
, c
4
, c
7
c
8
(y 2)
4
c
6
, c
9
, c
10
c
11
, c
12
(y
2
3y + 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41421
a = 0.473911
b = 0.618034
4.27683 12.0000
u = 1.41421
a = 0.181018
b = 1.61803
12.1725 12.0000
u = 1.41421
a = 1.05505
b = 1.61803
12.1725 12.0000
u = 1.41421
a = 2.76216
b = 0.618034
4.27683 12.0000
13
III. I
v
1
= ha, b + v 2, v
2
3v + 1i
(i) Arc colorings
a
3
=
v
0
a
7
=
1
0
a
8
=
1
0
a
4
=
v
0
a
9
=
1
0
a
11
=
0
v + 2
a
6
=
1
v + 3
a
2
=
v 1
v 3
a
1
=
1
v 3
a
5
=
v
0
a
10
=
v 2
v 3
a
12
=
v + 2
v + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
4
, c
7
c
8
u
2
c
5
(u + 1)
2
c
6
, c
9
u
2
u 1
c
10
, c
11
, c
12
u
2
+ u 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
2
c
3
, c
4
, c
7
c
8
y
2
c
6
, c
9
, c
10
c
11
, c
12
y
2
3y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.381966
a = 0
b = 1.61803
7.23771 6.00000
v = 2.61803
a = 0
b = 0.618034
0.657974 6.00000
17
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
44
+ 45u
43
+ ··· + 4203u + 81)
c
2
((u 1)
2
)(u + 1)
4
(u
44
+ 3u
43
+ ··· + 21u 9)
c
3
, c
7
, c
8
u
2
(u
2
2)
2
(u
44
3u
43
+ ··· 36u + 4)
c
4
u
2
(u
2
2)
2
(u
44
+ 9u
43
+ ··· + 1500u 964)
c
5
((u 1)
4
)(u + 1)
2
(u
44
+ 3u
43
+ ··· + 21u 9)
c
6
(u
2
u 1)(u
2
+ u 1)
2
(u
44
+ 2u
43
+ ··· + 10u + 1)
c
9
((u
2
u 1)
3
)(u
44
+ 4u
43
+ ··· 18u + 1)
c
10
((u
2
u 1)
2
)(u
2
+ u 1)(u
44
+ 2u
43
+ ··· + 10u + 1)
c
11
, c
12
((u
2
+ u 1)
3
)(u
44
+ 4u
43
+ ··· 18u + 1)
18
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
44
85y
43
+ ··· 6110883y + 6561)
c
2
, c
5
((y 1)
6
)(y
44
45y
43
+ ··· 4203y + 81)
c
3
, c
7
, c
8
y
2
(y 2)
4
(y
44
39y
43
+ ··· 368y + 16)
c
4
y
2
(y 2)
4
(y
44
+ 21y
43
+ ··· 4.11879 × 10
7
y + 929296)
c
6
, c
10
((y
2
3y + 1)
3
)(y
44
12y
43
+ ··· 58y + 1)
c
9
, c
11
, c
12
((y
2
3y + 1)
3
)(y
44
36y
43
+ ··· 242y + 1)
19