12n
0345
(K12n
0345
)
A knot diagram
1
Linearized knot diagam
3 6 8 7 2 11 3 4 12 1 7 10
Solving Sequence
3,7
8 4
9,11
12 6 2 1 5 10
c
7
c
3
c
8
c
11
c
6
c
2
c
1
c
5
c
10
c
4
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−4.30590 × 10
29
u
38
+ 1.40716 × 10
30
u
37
+ ··· + 3.25262 × 10
28
b 5.80343 × 10
30
,
1.92426 × 10
30
u
38
+ 6.35210 × 10
30
u
37
+ ··· + 3.25262 × 10
28
a 2.53835 × 10
31
,
u
39
3u
38
+ ··· + 36u + 4i
I
u
2
= h−au + b 2a 1, 2a
2
au + 2a + 2u 3, u
2
2i
I
v
1
= ha, b + v + 2, v
2
+ 3v + 1i
* 3 irreducible components of dim
C
= 0, with total 45 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−4.31 × 10
29
u
38
+ 1.41 × 10
30
u
37
+ · · · + 3.25 × 10
28
b 5.80 ×
10
30
, 1.92 × 10
30
u
38
+ 6.35 × 10
30
u
37
+ · · · + 3.25 × 10
28
a 2.54 ×
10
31
, u
39
3u
38
+ · · · + 36u + 4i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
4
2u
2
a
11
=
59.1604u
38
195.292u
37
+ ··· + 4436.04u + 780.403
13.2382u
38
43.2623u
37
+ ··· + 993.748u + 178.423
a
12
=
45.9221u
38
152.030u
37
+ ··· + 3442.29u + 601.980
13.2382u
38
43.2623u
37
+ ··· + 993.748u + 178.423
a
6
=
51.1260u
38
169.150u
37
+ ··· + 3814.68u + 661.729
23.7145u
38
78.2230u
37
+ ··· + 1784.77u + 313.995
a
2
=
1.07361u
38
+ 3.79195u
37
+ ··· 41.8527u + 1.03040
26.3378u
38
87.1349u
37
+ ··· + 1988.06u + 348.765
a
1
=
1.07361u
38
+ 3.79195u
37
+ ··· 41.8527u + 1.03040
26.7461u
38
88.2756u
37
+ ··· + 2004.32u + 351.049
a
5
=
u
3
+ 2u
u
3
+ u
a
10
=
7.08403u
38
23.4120u
37
+ ··· + 528.155u + 95.4828
26.7461u
38
+ 88.2756u
37
+ ··· 2004.32u 351.049
(ii) Obstruction class = 1
(iii) Cusp Shapes = 56.2608u
38
+ 183.733u
37
+ ··· 4395.07u 821.737
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
39
+ 15u
38
+ ··· + 5679u + 81
c
2
, c
5
u
39
+ 3u
38
+ ··· 45u + 9
c
3
, c
7
, c
8
u
39
3u
38
+ ··· + 36u + 4
c
4
u
39
+ 9u
38
+ ··· 12340u 380
c
6
, c
11
u
39
2u
38
+ ··· 10u + 1
c
9
, c
10
, c
12
u
39
4u
38
+ ··· 6u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
39
+ 25y
38
+ ··· + 19679031y 6561
c
2
, c
5
y
39
15y
38
+ ··· + 5679y 81
c
3
, c
7
, c
8
y
39
49y
38
+ ··· + 560y 16
c
4
y
39
109y
38
+ ··· + 28757360y 144400
c
6
, c
11
y
39
6y
38
+ ··· + 46y 1
c
9
, c
10
, c
12
y
39
30y
38
+ ··· + 38y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.278366 + 0.955359I
a = 0.591023 + 0.828865I
b = 0.623478 + 0.614458I
3.35402 + 4.18126I 7.78277 6.99514I
u = 0.278366 0.955359I
a = 0.591023 0.828865I
b = 0.623478 0.614458I
3.35402 4.18126I 7.78277 + 6.99514I
u = 0.887627 + 0.471243I
a = 1.50907 + 0.17598I
b = 0.886394 0.797483I
2.35149 5.07575I 1.77054 + 6.40036I
u = 0.887627 0.471243I
a = 1.50907 0.17598I
b = 0.886394 + 0.797483I
2.35149 + 5.07575I 1.77054 6.40036I
u = 0.957964
a = 0.302923
b = 1.25836
8.12538 10.0210
u = 1.065650 + 0.085902I
a = 0.718491 + 0.083392I
b = 0.515563 + 0.600875I
2.77568 0.03264I 0
u = 1.065650 0.085902I
a = 0.718491 0.083392I
b = 0.515563 0.600875I
2.77568 + 0.03264I 0
u = 0.796295 + 0.736026I
a = 1.42339 + 0.01369I
b = 0.950413 + 0.884348I
1.74573 9.69427I 0. + 8.10788I
u = 0.796295 0.736026I
a = 1.42339 0.01369I
b = 0.950413 0.884348I
1.74573 + 9.69427I 0. 8.10788I
u = 0.851097 + 0.768811I
a = 0.636558 0.270946I
b = 0.379215 0.675835I
0.64343 + 2.93674I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.851097 0.768811I
a = 0.636558 + 0.270946I
b = 0.379215 + 0.675835I
0.64343 2.93674I 0
u = 0.756459 + 0.321115I
a = 0.848073 + 0.323450I
b = 0.687338 + 0.927457I
1.16384 + 3.37058I 4.85431 4.93903I
u = 0.756459 0.321115I
a = 0.848073 0.323450I
b = 0.687338 0.927457I
1.16384 3.37058I 4.85431 + 4.93903I
u = 0.729654 + 0.114009I
a = 1.94616 0.30625I
b = 0.877049 + 0.529169I
0.720527 0.677496I 4.45492 + 3.52872I
u = 0.729654 0.114009I
a = 1.94616 + 0.30625I
b = 0.877049 0.529169I
0.720527 + 0.677496I 4.45492 3.52872I
u = 1.36027
a = 1.02723
b = 0.392618
3.15342 0
u = 0.025858 + 0.596227I
a = 1.28935 0.78910I
b = 0.476410 0.516668I
0.39053 + 1.36769I 3.78544 4.37417I
u = 0.025858 0.596227I
a = 1.28935 + 0.78910I
b = 0.476410 + 0.516668I
0.39053 1.36769I 3.78544 + 4.37417I
u = 1.42742
a = 10.9292
b = 0.157920
1.67196 0
u = 1.47236
a = 0.751761
b = 1.74885
4.21706 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.111960 + 0.411759I
a = 4.18092 0.61496I
b = 0.394904 + 0.488828I
3.05808 0.73206I 13.3386 6.5570I
u = 0.111960 0.411759I
a = 4.18092 + 0.61496I
b = 0.394904 0.488828I
3.05808 + 0.73206I 13.3386 + 6.5570I
u = 1.64569 + 0.02330I
a = 0.940304 0.261465I
b = 1.33024 + 0.90609I
7.65877 + 1.14141I 0
u = 1.64569 0.02330I
a = 0.940304 + 0.261465I
b = 1.33024 0.90609I
7.65877 1.14141I 0
u = 1.64517 + 0.08077I
a = 0.403452 0.032549I
b = 0.98617 + 1.32010I
7.20723 4.84674I 0
u = 1.64517 0.08077I
a = 0.403452 + 0.032549I
b = 0.98617 1.32010I
7.20723 + 4.84674I 0
u = 1.65274 + 0.23220I
a = 1.008000 0.471693I
b = 1.18235 + 1.09377I
6.4748 + 13.4066I 0
u = 1.65274 0.23220I
a = 1.008000 + 0.471693I
b = 1.18235 1.09377I
6.4748 13.4066I 0
u = 1.66262 + 0.24913I
a = 0.241455 0.016965I
b = 0.136254 + 0.574075I
2.81425 + 0.97653I 0
u = 1.66262 0.24913I
a = 0.241455 + 0.016965I
b = 0.136254 0.574075I
2.81425 0.97653I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.315278
a = 4.23572
b = 0.575388
2.39339 9.22220
u = 1.67924 + 0.13585I
a = 0.987276 + 0.371552I
b = 1.25098 1.02158I
11.24360 + 7.46891I 0
u = 1.67924 0.13585I
a = 0.987276 0.371552I
b = 1.25098 + 1.02158I
11.24360 7.46891I 0
u = 0.301204
a = 2.36999
b = 1.68053
10.3072 10.7730
u = 1.69258 + 0.19776I
a = 0.675700 + 0.148591I
b = 0.787702 1.170530I
9.38751 6.54529I 0
u = 1.69258 0.19776I
a = 0.675700 0.148591I
b = 0.787702 + 1.170530I
9.38751 + 6.54529I 0
u = 1.70589 + 0.04672I
a = 0.538540 0.089371I
b = 0.85440 + 1.24646I
12.52260 0.71174I 0
u = 1.70589 0.04672I
a = 0.538540 + 0.089371I
b = 0.85440 1.24646I
12.52260 + 0.71174I 0
u = 0.262239
a = 2.84003
b = 0.533756
1.18388 7.92960
8
II. I
u
2
= h−au + b 2a 1, 2a
2
au + 2a + 2u 3, u
2
2i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
2
a
4
=
u
u
a
9
=
1
0
a
11
=
a
au + 2a + 1
a
12
=
au a 1
au + 2a + 1
a
6
=
1
2
u
au 2a 2
a
2
=
1
2
u
au 2a + u 2
a
1
=
1
2
u
au 2a 2
a
5
=
0
u
a
10
=
au + 2a +
1
2
u
au 2a 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
4
c
2
(u + 1)
4
c
3
, c
4
, c
7
c
8
(u
2
2)
2
c
6
, c
12
(u
2
u 1)
2
c
9
, c
10
, c
11
(u
2
+ u 1)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
4
c
3
, c
4
, c
7
c
8
(y 2)
4
c
6
, c
9
, c
10
c
11
, c
12
(y
2
3y + 1)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41421
a = 0.473911
b = 0.618034
2.30291 8.00000
u = 1.41421
a = 0.181018
b = 1.61803
5.59278 8.00000
u = 1.41421
a = 1.05505
b = 1.61803
5.59278 8.00000
u = 1.41421
a = 2.76216
b = 0.618034
2.30291 8.00000
12
III. I
v
1
= ha, b + v + 2, v
2
+ 3v + 1i
(i) Arc colorings
a
3
=
v
0
a
7
=
1
0
a
8
=
1
0
a
4
=
v
0
a
9
=
1
0
a
11
=
0
v 2
a
12
=
v + 2
v 2
a
6
=
1
v 3
a
2
=
v 1
v + 3
a
1
=
1
v + 3
a
5
=
v
0
a
10
=
v 2
v + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 26
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
4
, c
7
c
8
u
2
c
5
(u + 1)
2
c
6
, c
9
, c
10
u
2
+ u 1
c
11
, c
12
u
2
u 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
2
c
3
, c
4
, c
7
c
8
y
2
c
6
, c
9
, c
10
c
11
, c
12
y
2
3y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.381966
a = 0
b = 1.61803
10.5276 26.0000
v = 2.61803
a = 0
b = 0.618034
2.63189 26.0000
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
39
+ 15u
38
+ ··· + 5679u + 81)
c
2
((u 1)
2
)(u + 1)
4
(u
39
+ 3u
38
+ ··· 45u + 9)
c
3
, c
7
, c
8
u
2
(u
2
2)
2
(u
39
3u
38
+ ··· + 36u + 4)
c
4
u
2
(u
2
2)
2
(u
39
+ 9u
38
+ ··· 12340u 380)
c
5
((u 1)
4
)(u + 1)
2
(u
39
+ 3u
38
+ ··· 45u + 9)
c
6
((u
2
u 1)
2
)(u
2
+ u 1)(u
39
2u
38
+ ··· 10u + 1)
c
9
, c
10
((u
2
+ u 1)
3
)(u
39
4u
38
+ ··· 6u 1)
c
11
(u
2
u 1)(u
2
+ u 1)
2
(u
39
2u
38
+ ··· 10u + 1)
c
12
((u
2
u 1)
3
)(u
39
4u
38
+ ··· 6u 1)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
39
+ 25y
38
+ ··· + 19679031y 6561)
c
2
, c
5
((y 1)
6
)(y
39
15y
38
+ ··· + 5679y 81)
c
3
, c
7
, c
8
y
2
(y 2)
4
(y
39
49y
38
+ ··· + 560y 16)
c
4
y
2
(y 2)
4
(y
39
109y
38
+ ··· + 2.87574 × 10
7
y 144400)
c
6
, c
11
((y
2
3y + 1)
3
)(y
39
6y
38
+ ··· + 46y 1)
c
9
, c
10
, c
12
((y
2
3y + 1)
3
)(y
39
30y
38
+ ··· + 38y 1)
18