12n
0346
(K12n
0346
)
A knot diagram
1
Linearized knot diagam
3 6 8 9 2 11 5 4 12 6 9 10
Solving Sequence
5,9
4 8 3
7,12
11 6 2 1 10
c
4
c
8
c
3
c
7
c
11
c
6
c
2
c
1
c
10
c
5
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−8563315867395u
19
+ 12169590007513u
18
+ ··· + 13082431761068b + 64802000815324,
52899877847623u
19
79722292100065u
18
+ ··· + 13082431761068a 413103210378158,
u
20
2u
19
+ ··· 12u + 4i
I
u
2
= hu
7
u
6
2u
5
+ 3u
4
2u
2
+ b + 4u 2, u
7
u
6
+ 3u
5
+ 2u
4
3u
3
+ a 2,
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1i
I
u
3
= h−au + b u 1, 2a
2
+ au 1, u
2
2i
I
v
1
= ha, b v + 2, v
2
3v + 1i
* 4 irreducible components of dim
C
= 0, with total 34 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−8.56 × 10
12
u
19
+ 1.22 × 10
13
u
18
+ · · · + 1.31 × 10
13
b + 6.48 ×
10
13
, 5.29 × 10
13
u
19
7.97 × 10
13
u
18
+ · · · + 1.31 × 10
13
a 4.13 ×
10
14
, u
20
2u
19
+ · · · 12u + 4i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
8
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
2u
2
a
7
=
u
3
+ 2u
u
3
+ u
a
12
=
4.04358u
19
+ 6.09384u
18
+ ··· 25.5560u + 31.5769
0.654566u
19
0.930224u
18
+ ··· + 6.84847u 4.95336
a
11
=
4.04358u
19
+ 6.09384u
18
+ ··· 25.5560u + 31.5769
0.367222u
19
+ 0.611916u
18
+ ··· 0.897037u + 3.01992
a
6
=
6.21544u
19
+ 9.28273u
18
+ ··· 48.2193u + 51.0252
0.348398u
19
0.661202u
18
+ ··· + 3.63448u 3.80249
a
2
=
4.90774u
19
+ 7.58167u
18
+ ··· 38.9378u + 42.2351
2.23801u
19
3.26288u
18
+ ··· + 16.4563u 17.7254
a
1
=
5.35239u
19
+ 8.30016u
18
+ ··· 43.5388u + 45.8952
2.16712u
19
3.30945u
18
+ ··· + 15.7609u 18.5509
a
10
=
5.60383u
19
8.48450u
18
+ ··· + 48.3882u 47.1067
2.25347u
19
+ 3.54770u
18
+ ··· 15.9192u + 19.1670
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
8651471282093
3270607940267
u
19
12603254258761
3270607940267
u
18
+ ···
78299168927818
3270607940267
u
83998088848016
3270607940267
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
+ 24u
18
+ ··· + 3807u + 81
c
2
, c
5
u
20
+ 4u
19
+ ··· 93u 9
c
3
, c
4
, c
8
u
20
+ 2u
19
+ ··· + 12u + 4
c
6
, c
10
u
20
+ 2u
19
+ ··· + 3200u + 256
c
7
u
20
6u
19
+ ··· 6212u 964
c
9
, c
11
, c
12
u
20
+ 12u
19
+ ··· 58u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
+ 48y
19
+ ··· 10684791y + 6561
c
2
, c
5
y
20
+ 24y
18
+ ··· 3807y + 81
c
3
, c
4
, c
8
y
20
14y
19
+ ··· 432y + 16
c
6
, c
10
y
20
60y
19
+ ··· 5160960y + 65536
c
7
y
20
+ 58y
19
+ ··· 44905072y + 929296
c
9
, c
11
, c
12
y
20
44y
19
+ ··· 2922y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.311540 + 0.820503I
a = 1.183960 + 0.104977I
b = 0.936205 0.261735I
1.94026 0.82547I 0.912486 + 0.761117I
u = 0.311540 0.820503I
a = 1.183960 0.104977I
b = 0.936205 + 0.261735I
1.94026 + 0.82547I 0.912486 0.761117I
u = 0.806269 + 0.099052I
a = 0.029427 0.611307I
b = 0.383913 0.245700I
1.290640 + 0.060456I 5.65835 + 0.55419I
u = 0.806269 0.099052I
a = 0.029427 + 0.611307I
b = 0.383913 + 0.245700I
1.290640 0.060456I 5.65835 0.55419I
u = 1.33638
a = 1.16154
b = 1.16836
3.62783 3.71420
u = 1.301610 + 0.401831I
a = 0.508418 0.295516I
b = 0.439577 + 0.851076I
1.51005 + 5.52302I 5.54282 3.24717I
u = 1.301610 0.401831I
a = 0.508418 + 0.295516I
b = 0.439577 0.851076I
1.51005 5.52302I 5.54282 + 3.24717I
u = 1.037800 + 0.883330I
a = 0.77758 1.27910I
b = 2.72069 2.90147I
4.14315 3.36874I 0.04800 + 2.58345I
u = 1.037800 0.883330I
a = 0.77758 + 1.27910I
b = 2.72069 + 2.90147I
4.14315 + 3.36874I 0.04800 2.58345I
u = 1.38998
a = 0.0133698
b = 1.23390
6.53389 14.0580
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.307583 + 1.370650I
a = 0.05460 + 1.81689I
b = 1.41200 + 5.33955I
16.9450 + 5.1999I 0.48479 2.11695I
u = 0.307583 1.370650I
a = 0.05460 1.81689I
b = 1.41200 5.33955I
16.9450 5.1999I 0.48479 + 2.11695I
u = 1.43456
a = 0.671677
b = 7.72000
4.98064 60.9990
u = 0.486279
a = 3.47218
b = 1.37914
6.88313 9.17840
u = 0.388073
a = 0.457271
b = 0.718784
1.01688 12.8430
u = 1.58364 + 0.49918I
a = 1.064100 + 0.688577I
b = 3.34498 + 2.38478I
16.4234 11.7755I 1.93237 + 4.54638I
u = 1.58364 0.49918I
a = 1.064100 0.688577I
b = 3.34498 2.38478I
16.4234 + 11.7755I 1.93237 4.54638I
u = 0.283054
a = 3.06452
b = 0.370034
1.22670 10.7000
u = 1.49310 + 0.84801I
a = 1.22823 + 0.86872I
b = 3.91160 + 3.62679I
19.0199 + 2.7480I 0.478669 0.983748I
u = 1.49310 0.84801I
a = 1.22823 0.86872I
b = 3.91160 3.62679I
19.0199 2.7480I 0.478669 + 0.983748I
6
II. I
u
2
= hu
7
u
6
2u
5
+ 3u
4
2u
2
+ b + 4u 2, u
7
u
6
+ 3u
5
+ 2u
4
3u
3
+ a 2, u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
8
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
2u
2
a
7
=
u
3
+ 2u
u
3
+ u
a
12
=
u
7
+ u
6
3u
5
2u
4
+ 3u
3
+ 2
u
7
+ u
6
+ 2u
5
3u
4
+ 2u
2
4u + 2
a
11
=
u
7
+ u
6
3u
5
2u
4
+ 3u
3
+ 2
u
7
+ u
6
+ 2u
5
3u
4
+ 2u
2
3u + 2
a
6
=
u
3
+ 2u
u
3
+ u
a
2
=
u
5
2u
3
+ u
u
7
+ 3u
5
2u
3
u
a
1
=
0
u
a
10
=
u
7
+ u
6
3u
5
2u
4
+ 3u
3
+ 2
u
7
+ u
6
+ 2u
5
3u
4
+ 2u
2
3u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
9u
6
10u
5
+ 27u
4
2u
3
18u
2
+ 20u 17
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
2
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
3
, c
4
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
5
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
6
, c
10
u
8
c
7
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
8
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
9
(u + 1)
8
c
11
, c
12
(u 1)
8
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
2
, c
5
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
3
, c
4
, c
8
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
6
, c
10
y
8
c
9
, c
11
, c
12
(y 1)
8
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 0.805639 0.183365I
b = 1.14297 0.89911I
0.604279 1.131230I 1.38132 + 1.25921I
u = 1.180120 0.268597I
a = 0.805639 + 0.183365I
b = 1.14297 + 0.89911I
0.604279 + 1.131230I 1.38132 1.25921I
u = 0.108090 + 0.747508I
a = 0.189481 1.310380I
b = 0.02521 1.55019I
3.80435 2.57849I 1.74277 + 4.63100I
u = 0.108090 0.747508I
a = 0.189481 + 1.310380I
b = 0.02521 + 1.55019I
3.80435 + 2.57849I 1.74277 4.63100I
u = 1.37100
a = 0.729394
b = 6.70204
4.85780 25.4550
u = 1.334530 + 0.318930I
a = 0.708845 0.169402I
b = 1.07471 1.15185I
0.73474 + 6.44354I 1.71699 7.87618I
u = 1.334530 0.318930I
a = 0.708845 + 0.169402I
b = 1.07471 + 1.15185I
0.73474 6.44354I 1.71699 + 7.87618I
u = 0.463640
a = 2.15684
b = 0.484913
0.799899 10.8330
10
III. I
u
3
= h−au + b u 1, 2a
2
+ au 1, u
2
2i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
4
=
1
2
a
8
=
u
u
a
3
=
1
0
a
7
=
0
u
a
12
=
a
au + u + 1
a
11
=
a
au + 2a + u + 1
a
6
=
a +
1
2
u
1
a
2
=
a +
1
2
u 1
1
a
1
=
a +
1
2
u
1
a
10
=
a +
1
2
u
2a + u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
4
c
2
(u + 1)
4
c
3
, c
4
, c
7
c
8
(u
2
2)
2
c
6
, c
11
, c
12
(u
2
+ u 1)
2
c
9
, c
10
(u
2
u 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
4
c
3
, c
4
, c
7
c
8
(y 2)
4
c
6
, c
9
, c
10
c
11
, c
12
(y
2
3y + 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.41421
a = 1.14412
b = 0.796180
2.30291 4.00000
u = 1.41421
a = 0.437016
b = 3.03225
5.59278 4.00000
u = 1.41421
a = 1.14412
b = 2.03225
2.30291 4.00000
u = 1.41421
a = 0.437016
b = 0.203820
5.59278 4.00000
14
IV. I
v
1
= ha, b v + 2, v
2
3v + 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
v
0
a
4
=
1
0
a
8
=
v
0
a
3
=
1
0
a
7
=
v
0
a
12
=
0
v 2
a
11
=
2v + 1
v 2
a
6
=
2v + 1
1
a
2
=
2v
1
a
1
=
2v 1
1
a
10
=
v
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
4
, c
7
c
8
u
2
c
5
(u + 1)
2
c
6
, c
9
u
2
u 1
c
10
, c
11
, c
12
u
2
+ u 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
2
c
3
, c
4
, c
7
c
8
y
2
c
6
, c
9
, c
10
c
11
, c
12
y
2
3y + 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.381966
a = 0
b = 1.61803
0.657974 14.0000
v = 2.61803
a = 0
b = 0.618034
7.23771 14.0000
18
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
6
(u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
20
+ 24u
18
+ ··· + 3807u + 81)
c
2
(u 1)
2
(u + 1)
4
(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
· (u
20
+ 4u
19
+ ··· 93u 9)
c
3
, c
4
u
2
(u
2
2)
2
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
· (u
20
+ 2u
19
+ ··· + 12u + 4)
c
5
(u 1)
4
(u + 1)
2
(u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
· (u
20
+ 4u
19
+ ··· 93u 9)
c
6
u
8
(u
2
u 1)(u
2
+ u 1)
2
(u
20
+ 2u
19
+ ··· + 3200u + 256)
c
7
u
2
(u
2
2)
2
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
20
6u
19
+ ··· 6212u 964)
c
8
u
2
(u
2
2)
2
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
· (u
20
+ 2u
19
+ ··· + 12u + 4)
c
9
((u + 1)
8
)(u
2
u 1)
3
(u
20
+ 12u
19
+ ··· 58u + 1)
c
10
u
8
(u
2
u 1)
2
(u
2
+ u 1)(u
20
+ 2u
19
+ ··· + 3200u + 256)
c
11
, c
12
((u 1)
8
)(u
2
+ u 1)
3
(u
20
+ 12u
19
+ ··· 58u + 1)
19
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
6
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
20
+ 48y
19
+ ··· 10684791y + 6561)
c
2
, c
5
(y 1)
6
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
20
+ 24y
18
+ ··· 3807y + 81)
c
3
, c
4
, c
8
y
2
(y 2)
4
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
20
14y
19
+ ··· 432y + 16)
c
6
, c
10
y
8
(y
2
3y + 1)
3
(y
20
60y
19
+ ··· 5160960y + 65536)
c
7
y
2
(y 2)
4
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
20
+ 58y
19
+ ··· 44905072y + 929296)
c
9
, c
11
, c
12
((y 1)
8
)(y
2
3y + 1)
3
(y
20
44y
19
+ ··· 2922y + 1)
20