10
159
(K10n
34
)
A knot diagram
1
Linearized knot diagam
6 7 10 1 8 9 10 1 2 4
Solving Sequence
1,6 2,8
9 5 4 10 3 7
c
1
c
8
c
5
c
4
c
10
c
3
c
7
c
2
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−31u
8
+ 18u
7
+ 76u
6
39u
5
208u
4
+ 102u
3
+ 226u
2
+ 25b 20u 72,
108u
8
+ 49u
7
+ 243u
6
77u
5
694u
4
+ 261u
3
+ 693u
2
+ 25a + 65u 196,
u
9
u
8
2u
7
+ 2u
6
+ 6u
5
6u
4
5u
3
+ 3u
2
+ 2u 1i
I
u
2
= h1002u
13
332u
12
+ ··· + 1889b + 2916, 2310u
13
+ 279u
12
+ ··· + 1889a 9392,
u
14
+ u
11
+ 3u
10
+ 2u
9
7u
8
+ 7u
7
u
6
+ 11u
5
14u
4
+ 9u
3
5u
2
+ 5u 1i
I
u
3
= hu
2
+ b 1, u
2
+ a + u, u
3
u + 1i
I
u
4
= hb u + 1, a + u 1, u
2
u 1i
I
u
5
= hb + 1, a 1, u + 1i
* 5 irreducible components of dim
C
= 0, with total 29 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−31u
8
+ 18u
7
+ · · · + 25b 72, 108u
8
+ 49u
7
+ · · · + 25a
196, u
9
u
8
+ · · · + 2u 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
8
=
4.32000u
8
1.96000u
7
+ ··· 2.60000u + 7.84000
31
25
u
8
18
25
u
7
+ ··· +
4
5
u +
72
25
a
9
=
5.56000u
8
2.68000u
7
+ ··· 1.80000u + 10.7200
31
25
u
8
18
25
u
7
+ ··· +
4
5
u +
72
25
a
5
=
1.76000u
8
+ 1.28000u
7
+ ··· 2.20000u 5.12000
48
25
u
8
19
25
u
7
+ ···
3
5
u +
76
25
a
4
=
4
25
u
8
+
13
25
u
7
+ ···
14
5
u
52
25
48
25
u
8
19
25
u
7
+ ···
3
5
u +
76
25
a
10
=
5.56000u
8
2.68000u
7
+ ··· 2.80000u + 10.7200
31
25
u
8
18
25
u
7
+ ··· +
4
5
u +
72
25
a
3
=
2.76000u
8
+ 2.28000u
7
+ ··· 4.20000u 9.12000
12
5
u
8
6
5
u
7
+ ··· 2u +
19
5
a
7
=
16
5
u
8
3
5
u
7
+ ··· 6u +
17
5
3.04000u
8
1.12000u
7
+ ··· 1.20000u + 5.48000
(ii) Obstruction class = 1
(iii) Cusp Shapes =
96
25
u
8
+
13
25
u
7
+
216
25
u
6
24
25
u
5
653
25
u
4
+
82
25
u
3
+
691
25
u
2
+
26
5
u
377
25
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
9
u
8
2u
7
+ 2u
6
+ 6u
5
6u
4
5u
3
+ 3u
2
+ 2u 1
c
2
, c
8
u
9
4u
7
+ 7u
5
2u
4
4u
3
u
2
+ 3u + 1
c
3
, c
4
, c
10
u
9
+ 5u
8
+ 12u
7
+ 12u
6
6u
5
38u
4
57u
3
49u
2
24u 5
c
5
, c
7
u
9
+ 6u
7
+ 4u
6
+ 15u
5
+ 18u
4
+ 18u
3
+ 19u
2
+ 7u + 1
c
6
u
9
+ 7u
8
+ 22u
7
+ 44u
6
+ 72u
5
+ 102u
4
+ 103u
3
+ 59u
2
+ 18u + 5
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
y
9
5y
8
+ 20y
7
50y
6
+ 90y
5
118y
4
+ 89y
3
41y
2
+ 10y 1
c
2
, c
8
y
9
8y
8
+ 30y
7
64y
6
+ 87y
5
84y
4
+ 54y
3
21y
2
+ 11y 1
c
3
, c
4
, c
10
y
9
y
8
+ 12y
7
22y
6
+ 22y
5
110y
4
67y
3
45y
2
+ 86y 25
c
5
, c
7
y
9
+ 12y
8
+ ··· + 11y 1
c
6
y
9
5y
8
+ 12y
7
+ 10y
6
50y
5
42y
4
+ 725y
3
793y
2
266y 25
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.675360 + 0.321360I
a = 0.375927 0.035170I
b = 0.490473 + 0.554222I
1.230240 + 0.388380I 8.56083 2.01333I
u = 0.675360 0.321360I
a = 0.375927 + 0.035170I
b = 0.490473 0.554222I
1.230240 0.388380I 8.56083 + 2.01333I
u = 1.27629
a = 0.656695
b = 0.328475
6.80161 15.9820
u = 1.16884 + 0.87463I
a = 0.616776 + 0.922983I
b = 1.299660 + 0.083541I
5.93576 + 3.11393I 2.06870 2.32890I
u = 1.16884 0.87463I
a = 0.616776 0.922983I
b = 1.299660 0.083541I
5.93576 3.11393I 2.06870 + 2.32890I
u = 0.523277 + 0.089360I
a = 0.56707 2.28589I
b = 0.883398 0.665684I
0.97258 2.76102I 6.12756 + 2.10529I
u = 0.523277 0.089360I
a = 0.56707 + 2.28589I
b = 0.883398 + 0.665684I
0.97258 + 2.76102I 6.12756 2.10529I
u = 1.18278 + 0.96607I
a = 1.136270 + 0.521152I
b = 1.52834 + 0.58529I
5.94738 11.74060I 3.25195 + 6.67016I
u = 1.18278 0.96607I
a = 1.136270 0.521152I
b = 1.52834 0.58529I
5.94738 + 11.74060I 3.25195 6.67016I
5
II. I
u
2
= h1002u
13
332u
12
+ · · · + 1889b + 2916, 2310u
13
+ 279u
12
+ · · · +
1889a 9392, u
14
+ u
11
+ · · · + 5u 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
8
=
1.22287u
13
0.147697u
12
+ ··· 5.55214u + 4.97194
0.530439u
13
+ 0.175754u
12
+ ··· + 1.11223u 1.54367
a
9
=
0.692430u
13
+ 0.0280572u
12
+ ··· 4.43992u + 3.42827
0.530439u
13
+ 0.175754u
12
+ ··· + 1.11223u 1.54367
a
5
=
0.967708u
13
0.0831128u
12
+ ··· 6.71572u + 5.12758
0.582319u
13
0.0725251u
12
+ ··· + 2.92959u 1.74854
a
4
=
0.385389u
13
0.155638u
12
+ ··· 3.78613u + 3.37904
0.582319u
13
0.0725251u
12
+ ··· + 2.92959u 1.74854
a
10
=
u
13
+ u
10
+ 3u
9
+ 2u
8
7u
7
+ 7u
6
u
5
+ 11u
4
14u
3
+ 9u
2
5u + 5
0.307570u
13
+ 0.0280572u
12
+ ··· + 1.56008u 1.57173
a
3
=
1.36316u
13
0.737957u
12
+ ··· + 1.72155u 2.43409
0.238221u
13
+ 0.288512u
12
+ ··· + 2.83483u 0.124404
a
7
=
0.592377u
13
+ 0.0492324u
12
+ ··· 5.14929u + 2.67602
0.206988u
13
+ 0.204870u
12
+ ··· + 0.636845u 0.703017
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1965
1889
u
13
+
5491
1889
u
12
+ ···
3549
1889
u +
3230
1889
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
14
+ u
11
+ ··· + 5u 1
c
2
, c
8
u
14
6u
12
+ ··· 9u + 1
c
3
, c
4
, c
10
(u
7
2u
6
+ 2u
5
+ u
4
2u
3
+ 3u
2
2u + 1)
2
c
5
, c
7
u
14
3u
13
+ ··· 6u 1
c
6
(u
7
3u
6
+ 3u
5
+ 2u
4
6u
3
+ 3u
2
+ 3u 2)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
y
14
+ 6y
12
+ ··· 15y + 1
c
2
, c
8
y
14
12y
13
+ ··· 63y + 1
c
3
, c
4
, c
10
(y
7
+ 4y
5
y
4
6y
3
3y
2
2y 1)
2
c
5
, c
7
y
14
+ 13y
13
+ ··· + 42y + 1
c
6
(y
7
3y
6
+ 9y
5
16y
4
+ 30y
3
37y
2
+ 21y 4)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877499 + 0.643882I
a = 0.815701 0.730313I
b = 1.36033 0.47577I
2.12977 2.53884I 0.86344 + 1.81085I
u = 0.877499 0.643882I
a = 0.815701 + 0.730313I
b = 1.36033 + 0.47577I
2.12977 + 2.53884I 0.86344 1.81085I
u = 0.763487 + 0.442848I
a = 0.149425 0.086700I
b = 0.33250 1.47887I
0.33600 4.72329I 7.01907 + 9.17288I
u = 0.763487 0.442848I
a = 0.149425 + 0.086700I
b = 0.33250 + 1.47887I
0.33600 + 4.72329I 7.01907 9.17288I
u = 0.796980 + 0.997104I
a = 1.285810 0.554607I
b = 1.011450 0.500189I
0.33600 + 4.72329I 7.01907 9.17288I
u = 0.796980 0.997104I
a = 1.285810 + 0.554607I
b = 1.011450 + 0.500189I
0.33600 4.72329I 7.01907 + 9.17288I
u = 0.775231 + 1.031020I
a = 1.276240 + 0.214140I
b = 1.62238 + 0.39283I
7.17429 + 3.91715I 1.20398 3.00324I
u = 0.775231 1.031020I
a = 1.276240 0.214140I
b = 1.62238 0.39283I
7.17429 3.91715I 1.20398 + 3.00324I
u = 0.196138 + 0.662538I
a = 0.30408 2.08007I
b = 0.162591 + 0.048461I
2.12977 + 2.53884I 0.86344 1.81085I
u = 0.196138 0.662538I
a = 0.30408 + 2.08007I
b = 0.162591 0.048461I
2.12977 2.53884I 0.86344 + 1.81085I
9
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.81203 + 1.22658I
a = 0.961913 + 0.622177I
b = 1.361880 0.158001I
7.17429 + 3.91715I 1.20398 3.00324I
u = 0.81203 1.22658I
a = 0.961913 0.622177I
b = 1.361880 + 0.158001I
7.17429 3.91715I 1.20398 + 3.00324I
u = 1.60968
a = 0.365698
b = 0.746600
2.83077 1.71920
u = 0.240340
a = 4.01341
b = 1.46232
2.83077 1.71920
10
III. I
u
3
= hu
2
+ b 1, u
2
+ a + u, u
3
u + 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
8
=
u
2
u
u
2
+ 1
a
9
=
2u
2
u + 1
u
2
+ 1
a
5
=
u
2
2
u
2
a
4
=
2
u
2
a
10
=
2u
2
+ 1
u
2
+ u
a
3
=
u
2
2u 2
2u + 1
a
7
=
2u
2
2u 1
2u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
2
+ 5u 6
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
3
u + 1
c
2
, c
8
u
3
+ u
2
1
c
3
, c
4
u
3
2u
2
+ u 1
c
5
, c
7
u
3
+ u
2
+ 2u + 1
c
6
u
3
+ 4u
2
+ 7u + 5
c
10
u
3
+ 2u
2
+ u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
y
3
2y
2
+ y 1
c
2
, c
8
y
3
y
2
+ 2y 1
c
3
, c
4
, c
10
y
3
2y
2
3y 1
c
5
, c
7
y
3
+ 3y
2
+ 2y 1
c
6
y
3
2y
2
+ 9y 25
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.662359 + 0.562280I
a = 0.78492 1.30714I
b = 0.877439 0.744862I
1.45094 3.77083I 1.95284 + 7.28057I
u = 0.662359 0.562280I
a = 0.78492 + 1.30714I
b = 0.877439 + 0.744862I
1.45094 + 3.77083I 1.95284 7.28057I
u = 1.32472
a = 0.430160
b = 0.754878
6.19175 2.09430
14
IV. I
u
4
= hb u + 1, a + u 1, u
2
u 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u + 1
a
8
=
u + 1
u 1
a
9
=
0
u 1
a
5
=
u 1
1
a
4
=
u
1
a
10
=
u + 1
1
a
3
=
1
0
a
7
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 17
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
8
c
9
u
2
u 1
c
3
, c
4
(u + 1)
2
c
5
, c
7
, c
10
(u 1)
2
c
6
u
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
8
c
9
y
2
3y + 1
c
3
, c
4
, c
5
c
7
, c
10
(y 1)
2
c
6
y
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.61803
b = 1.61803
3.28987 17.0000
u = 1.61803
a = 0.618034
b = 0.618034
3.28987 17.0000
18
V. I
u
5
= hb + 1, a 1, u + 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
1
a
2
=
1
1
a
8
=
1
1
a
9
=
0
1
a
5
=
1
0
a
4
=
1
0
a
10
=
1
0
a
3
=
1
0
a
7
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
8
, c
9
u + 1
c
3
, c
4
, c
6
c
10
u
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
8
, c
9
y 1
c
3
, c
4
, c
6
c
10
y
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
1.64493 6.00000
22
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
9
(u + 1)(u
2
u 1)(u
3
u + 1)
· (u
9
u
8
2u
7
+ 2u
6
+ 6u
5
6u
4
5u
3
+ 3u
2
+ 2u 1)
· (u
14
+ u
11
+ ··· + 5u 1)
c
2
, c
8
(u + 1)(u
2
u 1)(u
3
+ u
2
1)(u
9
4u
7
+ ··· + 3u + 1)
· (u
14
6u
12
+ ··· 9u + 1)
c
3
, c
4
u(u + 1)
2
(u
3
2u
2
+ u 1)
· (u
7
2u
6
+ 2u
5
+ u
4
2u
3
+ 3u
2
2u + 1)
2
· (u
9
+ 5u
8
+ 12u
7
+ 12u
6
6u
5
38u
4
57u
3
49u
2
24u 5)
c
5
, c
7
(u 1)
2
(u + 1)(u
3
+ u
2
+ 2u + 1)
· (u
9
+ 6u
7
+ 4u
6
+ 15u
5
+ 18u
4
+ 18u
3
+ 19u
2
+ 7u + 1)
· (u
14
3u
13
+ ··· 6u 1)
c
6
u
3
(u
3
+ 4u
2
+ 7u + 5)(u
7
3u
6
+ 3u
5
+ 2u
4
6u
3
+ 3u
2
+ 3u 2)
2
· (u
9
+ 7u
8
+ 22u
7
+ 44u
6
+ 72u
5
+ 102u
4
+ 103u
3
+ 59u
2
+ 18u + 5)
c
10
u(u 1)
2
(u
3
+ 2u
2
+ u + 1)
· (u
7
2u
6
+ 2u
5
+ u
4
2u
3
+ 3u
2
2u + 1)
2
· (u
9
+ 5u
8
+ 12u
7
+ 12u
6
6u
5
38u
4
57u
3
49u
2
24u 5)
23
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
9
(y 1)(y
2
3y + 1)(y
3
2y
2
+ y 1)
· (y
9
5y
8
+ 20y
7
50y
6
+ 90y
5
118y
4
+ 89y
3
41y
2
+ 10y 1)
· (y
14
+ 6y
12
+ ··· 15y + 1)
c
2
, c
8
(y 1)(y
2
3y + 1)(y
3
y
2
+ 2y 1)
· (y
9
8y
8
+ 30y
7
64y
6
+ 87y
5
84y
4
+ 54y
3
21y
2
+ 11y 1)
· (y
14
12y
13
+ ··· 63y + 1)
c
3
, c
4
, c
10
y(y 1)
2
(y
3
2y
2
3y 1)(y
7
+ 4y
5
y
4
6y
3
3y
2
2y 1)
2
· (y
9
y
8
+ 12y
7
22y
6
+ 22y
5
110y
4
67y
3
45y
2
+ 86y 25)
c
5
, c
7
((y 1)
3
)(y
3
+ 3y
2
+ 2y 1)(y
9
+ 12y
8
+ ··· + 11y 1)
· (y
14
+ 13y
13
+ ··· + 42y + 1)
c
6
y
3
(y
3
2y
2
+ 9y 25)
· (y
7
3y
6
+ 9y
5
16y
4
+ 30y
3
37y
2
+ 21y 4)
2
· (y
9
5y
8
+ 12y
7
+ 10y
6
50y
5
42y
4
+ 725y
3
793y
2
266y 25)
24