12n
0354
(K12n
0354
)
A knot diagram
1
Linearized knot diagam
3 5 7 10 2 12 1 4 5 9 6 4
Solving Sequence
3,5
2 6
1,10
4 9 11 12 7 8
c
2
c
5
c
1
c
4
c
9
c
10
c
12
c
6
c
7
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−2802u
15
+ 14984u
14
+ ··· + 11339b + 32255, a 1,
u
16
+ 4u
14
+ 16u
12
+ u
11
+ 33u
10
+ 4u
9
+ 45u
8
+ 7u
7
+ 38u
6
+ 7u
5
+ 21u
4
+ 5u
3
+ 7u
2
+ u + 1i
I
u
2
= h−2u
4
u
3
+ b 2u + 2, a + 1, u
5
+ u
4
+ u
3
+ 2u
2
+ u + 1i
I
u
3
= hb 1, 2u
13
u
12
6u
11
u
10
10u
9
u
8
10u
7
+ 2u
6
7u
5
u
4
4u
3
u
2
+ a + u 1,
u
14
+ 4u
12
u
11
+ 9u
10
3u
9
+ 13u
8
6u
7
+ 14u
6
6u
5
+ 11u
4
4u
3
+ 5u
2
u + 1i
I
u
4
= hb + 1, 6956823038u
13
6026687311u
12
+ ··· + 24816265351a + 168071313931,
u
14
4u
12
+ u
11
+ 15u
10
3u
9
29u
8
+ 8u
7
+ 20u
6
14u
5
+ u
4
+ 14u
3
+ 11u
2
39u + 19i
* 4 irreducible components of dim
C
= 0, with total 49 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−2802u
15
+ 14984u
14
+ · · ·+11339b+32255, a 1, u
16
+ 4u
14
+ · · ·+u+1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
2
a
10
=
1
0.247112u
15
1.32146u
14
+ ··· 4.78958u 2.84461
a
4
=
u
1.32146u
15
+ 0.0903960u
14
+ ··· + 4.09172u + 0.247112
a
9
=
1
0.247112u
15
1.32146u
14
+ ··· 4.78958u 2.84461
a
11
=
u
2
+ 1
0.156716u
15
0.695299u
14
+ ··· 3.71523u 1.52315
a
12
=
0.232560u
15
+ 0.391393u
14
+ ··· + 0.538584u + 1.69530
0.0796367u
15
0.619102u
14
+ ··· 3.33548u 1.21924
a
7
=
0.327807u
15
+ 0.339095u
14
+ ··· + 2.63674u 0.399859
0.233618u
15
+ 0.650057u
14
+ ··· + 3.55225u + 1.53021
a
8
=
u
4
u
2
1
0.0145515u
15
+ 0.930064u
14
+ ··· + 4.25099u + 2.14931
(ii) Obstruction class = 1
(iii) Cusp Shapes =
20605
11339
u
15
+
3850
11339
u
14
+ ··· +
224602
11339
u +
37351
11339
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
16
+ 8u
15
+ ··· + 13u + 1
c
2
, c
4
, c
5
c
9
u
16
+ 4u
14
+ ··· u + 1
c
3
u
16
+ 5u
15
+ ··· + 8u + 3
c
6
, c
11
, c
12
u
16
+ u
15
+ ··· + 2u + 1
c
7
u
16
u
15
+ ··· + 14u + 17
c
8
u
16
+ 7u
14
+ ··· + 13u + 5
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
16
+ 32y
15
+ ··· 7y + 1
c
2
, c
4
, c
5
c
9
y
16
+ 8y
15
+ ··· + 13y + 1
c
3
y
16
+ 3y
15
+ ··· + 104y + 9
c
6
, c
11
, c
12
y
16
23y
15
+ ··· 22y + 1
c
7
y
16
+ 27y
15
+ ··· + 2796y + 289
c
8
y
16
+ 14y
15
+ ··· + 471y + 25
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.530810 + 0.923327I
a = 1.00000
b = 0.789890 0.248067I
2.22282 4.13785I 5.34445 + 5.61520I
u = 0.530810 0.923327I
a = 1.00000
b = 0.789890 + 0.248067I
2.22282 + 4.13785I 5.34445 5.61520I
u = 0.176444 + 0.912663I
a = 1.00000
b = 0.297414 + 0.728074I
1.53095 4.35219I 2.44817 + 6.95568I
u = 0.176444 0.912663I
a = 1.00000
b = 0.297414 0.728074I
1.53095 + 4.35219I 2.44817 6.95568I
u = 0.525355 + 0.730919I
a = 1.00000
b = 1.71220 0.54617I
3.44631 + 4.47005I 6.86692 8.13679I
u = 0.525355 0.730919I
a = 1.00000
b = 1.71220 + 0.54617I
3.44631 4.47005I 6.86692 + 8.13679I
u = 0.462163 + 1.026620I
a = 1.00000
b = 2.11062 + 1.16455I
2.50069 + 6.26666I 4.16993 5.19035I
u = 0.462163 1.026620I
a = 1.00000
b = 2.11062 1.16455I
2.50069 6.26666I 4.16993 + 5.19035I
u = 0.370346 + 0.499709I
a = 1.00000
b = 0.423006 0.797373I
0.645184 1.116330I 5.05748 + 5.63154I
u = 0.370346 0.499709I
a = 1.00000
b = 0.423006 + 0.797373I
0.645184 + 1.116330I 5.05748 5.63154I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.031146 + 0.558234I
a = 1.00000
b = 0.50534 1.74362I
0.85013 1.38875I 2.96618 + 5.31348I
u = 0.031146 0.558234I
a = 1.00000
b = 0.50534 + 1.74362I
0.85013 + 1.38875I 2.96618 5.31348I
u = 1.04563 + 1.32610I
a = 1.00000
b = 2.17161 0.76132I
17.5809 5.0556I 3.38038 + 2.00245I
u = 1.04563 1.32610I
a = 1.00000
b = 2.17161 + 0.76132I
17.5809 + 5.0556I 3.38038 2.00245I
u = 1.10456 + 1.28859I
a = 1.00000
b = 2.09543 + 0.79872I
17.9422 + 13.0054I 3.50269 5.71450I
u = 1.10456 1.28859I
a = 1.00000
b = 2.09543 0.79872I
17.9422 13.0054I 3.50269 + 5.71450I
6
II. I
u
2
= h−2u
4
u
3
+ b 2u + 2, a + 1, u
5
+ u
4
+ u
3
+ 2u
2
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
2
a
10
=
1
2u
4
+ u
3
+ 2u 2
a
4
=
u
u
4
2u
3
2u
2
3u 2
a
9
=
1
2u
4
+ u
3
u
2
+ 2u 2
a
11
=
u
2
1
2u
2
+ u 1
a
12
=
0
u
4
+ u
a
7
=
u
u
4
+ u
3
+ u
2
+ 2u
a
8
=
u
4
u
2
1
u
4
+ u
3
+ 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
4
4u
2
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
u
4
u
3
+ 4u
2
3u + 1
c
2
, c
4
u
5
+ u
4
+ u
3
+ 2u
2
+ u + 1
c
3
u
5
+ 4u
4
+ 8u
3
+ 9u
2
+ 6u + 1
c
5
, c
9
u
5
u
4
+ u
3
2u
2
+ u 1
c
6
, c
12
u
5
+ 2u
4
u
3
2u
2
+ 1
c
7
u
5
+ 2u
4
+ 2u
3
+ 3u
2
+ 2u + 1
c
8
u
5
5u
4
+ 6u
3
3u
2
+ u 1
c
10
u
5
+ u
4
u
3
4u
2
3u 1
c
11
u
5
2u
4
u
3
+ 2u
2
1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
5
3y
4
+ 3y
3
8y
2
+ y 1
c
2
, c
4
, c
5
c
9
y
5
+ y
4
y
3
4y
2
3y 1
c
3
y
5
+ 4y
3
+ 7y
2
+ 18y 1
c
6
, c
11
, c
12
y
5
6y
4
+ 9y
3
8y
2
+ 4y 1
c
7
y
5
4y
3
5y
2
2y 1
c
8
y
5
13y
4
+ 8y
3
7y
2
5y 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.428550 + 1.039280I
a = 1.00000
b = 2.43253 1.66541I
1.91329 + 6.77491I 3.63648 11.54818I
u = 0.428550 1.039280I
a = 1.00000
b = 2.43253 + 1.66541I
1.91329 6.77491I 3.63648 + 11.54818I
u = 0.276511 + 0.728237I
a = 1.00000
b = 2.04663 + 1.96846I
0.789751 + 0.607163I 2.03451 + 3.43880I
u = 0.276511 0.728237I
a = 1.00000
b = 2.04663 1.96846I
0.789751 0.607163I 2.03451 3.43880I
u = 1.30408
a = 1.00000
b = 1.04169
5.53695 7.65800
10
III. I
u
3
= hb 1, 2u
13
u
12
+ · · · + a 1, u
14
+ 4u
12
+ · · · u + 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
2
a
10
=
2u
13
+ u
12
+ ··· u + 1
1
a
4
=
3u
13
u
12
+ ··· 5u 1
u
13
+ 2u
12
+ ··· 2u + 2
a
9
=
2u
13
+ u
12
+ ··· u + 1
2u
13
u
12
+ ··· 2u
2
u
a
11
=
4u
13
+ u
12
+ ··· + 6u + 2
u
13
+ 3u
11
+ ··· + 2u 2
a
12
=
4u
13
+ u
12
+ ··· + 6u + 3
u
13
+ 3u
11
+ ··· + 2u 1
a
7
=
2u
13
2u
12
+ ··· + 9u 5
u
13
3u
11
+ u
10
5u
9
+ 2u
8
5u
7
+ 3u
6
4u
5
+ u
4
2u
3
+ u
a
8
=
u
13
2u
12
+ ··· + 5u 4
u
13
u
12
+ ··· + 3u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
13
+5u
12
+13u
11
+17u
10
+25u
9
+35u
8
+30u
7
+40u
6
+19u
5
+38u
4
+10u
3
+25u
2
+14
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
8u
13
+ ··· 9u + 1
c
2
, c
4
u
14
+ 4u
12
+ ··· u + 1
c
3
(u
7
2u
6
+ 2u
5
u
3
+ 2u
2
2u + 1)
2
c
5
, c
9
u
14
+ 4u
12
+ ··· + u + 1
c
6
, c
12
u
14
u
13
+ ··· + 2u + 1
c
7
u
14
3u
13
+ ··· 2u + 1
c
8
u
14
+ 3u
13
+ ··· + 3u + 1
c
10
u
14
+ 8u
13
+ ··· + 9u + 1
c
11
u
14
+ u
13
+ ··· 2u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
14
+ 4y
13
+ ··· 3y + 1
c
2
, c
4
, c
5
c
9
y
14
+ 8y
13
+ ··· + 9y + 1
c
3
(y
7
+ 2y
5
3y
3
1)
2
c
6
, c
11
, c
12
y
14
11y
13
+ ··· 6y + 1
c
7
y
14
+ 11y
13
+ ··· + 2y + 1
c
8
y
14
+ 3y
13
+ ··· + 17y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.716205 + 0.619830I
a = 1.162750 + 0.669843I
b = 1.00000
0.78568 + 5.00992I 1.33595 7.33845I
u = 0.716205 0.619830I
a = 1.162750 0.669843I
b = 1.00000
0.78568 5.00992I 1.33595 + 7.33845I
u = 0.369492 + 1.060950I
a = 0.460474 + 0.495574I
b = 1.00000
0.54326 3.38801I 4.33219 + 2.61481I
u = 0.369492 1.060950I
a = 0.460474 0.495574I
b = 1.00000
0.54326 + 3.38801I 4.33219 2.61481I
u = 0.764704 + 0.855799I
a = 0.405506 0.437590I
b = 1.00000
3.53615 2.90027I 8.22879 + 2.19158I
u = 0.764704 0.855799I
a = 0.405506 + 0.437590I
b = 1.00000
3.53615 + 2.90027I 8.22879 2.19158I
u = 0.544331 + 1.111970I
a = 0.613385 + 0.789784I
b = 1.00000
0.977413 61.206125 + 0.10I
u = 0.544331 1.111970I
a = 0.613385 0.789784I
b = 1.00000
0.977413 61.206125 + 0.10I
u = 0.355639 + 0.671652I
a = 1.00622 1.08291I
b = 1.00000
0.54326 3.38801I 4.33219 + 2.61481I
u = 0.355639 0.671652I
a = 1.00622 + 1.08291I
b = 1.00000
0.54326 + 3.38801I 4.33219 2.61481I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.417581 + 1.200450I
a = 0.645728 + 0.371994I
b = 1.00000
0.78568 5.00992I 1.33595 + 7.33845I
u = 0.417581 1.200450I
a = 0.645728 0.371994I
b = 1.00000
0.78568 + 5.00992I 1.33595 7.33845I
u = 0.064397 + 0.681658I
a = 1.13932 1.22946I
b = 1.00000
3.53615 + 2.90027I 8.22879 2.19158I
u = 0.064397 0.681658I
a = 1.13932 + 1.22946I
b = 1.00000
3.53615 2.90027I 8.22879 + 2.19158I
15
IV. I
u
4
= hb + 1, 6.96 × 10
9
u
13
6.03 × 10
9
u
12
+ · · · + 2.48 × 10
10
a +
1.68 × 10
11
, u
14
4u
12
+ · · · 39u + 19i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
2
a
10
=
0.280333u
13
+ 0.242852u
12
+ ··· + 5.54317u 6.77263
1
a
4
=
0.478511u
13
+ 0.441369u
12
+ ··· + 9.82537u 9.15179
0.242852u
13
+ 0.188871u
12
+ ··· + 5.16037u 5.32633
a
9
=
0.280333u
13
+ 0.242852u
12
+ ··· + 5.54317u 6.77263
0.188871u
13
+ 0.159671u
12
+ ··· + 4.14491u 5.61419
a
11
=
0.763211u
13
+ 0.779348u
12
+ ··· + 15.9697u 14.4864
1.00101u
13
+ 1.01426u
12
+ ··· + 21.2588u 20.2851
a
12
=
0.258216u
13
+ 0.268552u
12
+ ··· + 5.23924u 4.53134
0.00898172u
13
+ 0.00732707u
12
+ ··· + 0.202185u 0.624964
a
7
=
0.120478u
13
0.0275435u
12
+ ··· + 3.40920u 4.59752
0.201962u
13
+ 0.166300u
12
+ ··· + 4.28888u 4.08455
a
8
=
0.945722u
13
1.19104u
12
+ ··· 19.0444u + 13.6134
0.375642u
13
0.447550u
12
+ ··· 7.86413u + 6.35879
(ii) Obstruction class = 1
(iii) Cusp Shapes =
210581923
1306119229
u
13
357801343
1306119229
u
12
+ ···
6208012118
1306119229
u +
4609135372
1306119229
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
14
8u
13
+ ··· 1103u + 361
c
2
, c
4
, c
5
c
9
u
14
4u
12
+ ··· + 39u + 19
c
3
(u
7
2u
6
+ 2u
5
+ u
3
2u
2
+ 2u 1)
2
c
6
, c
11
, c
12
u
14
u
13
+ ··· + 724u + 253
c
7
u
14
3u
13
+ ··· + 350u + 67
c
8
u
14
3u
13
+ ··· 210483u + 186979
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
14
+ 28y
13
+ ··· 313387y + 130321
c
2
, c
4
, c
5
c
9
y
14
8y
13
+ ··· 1103y + 361
c
3
(y
7
+ 6y
5
+ 5y
3
1)
2
c
6
, c
11
, c
12
y
14
35y
13
+ ··· + 300098y + 64009
c
7
y
14
+ 31y
13
+ ··· + 16994y + 4489
c
8
y
14
+ 103y
13
+ ··· 64089585027y + 34961146441
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.264475 + 0.932556I
a = 0.851114 0.524981I
b = 1.00000
3.35276 6.16157 + 0.I
u = 0.264475 0.932556I
a = 0.851114 + 0.524981I
b = 1.00000
3.35276 6.16157 + 0.I
u = 0.700991 + 0.805619I
a = 0.335282 0.709899I
b = 1.00000
0.20654 2.41511I 3.04885 + 3.06912I
u = 0.700991 0.805619I
a = 0.335282 + 0.709899I
b = 1.00000
0.20654 + 2.41511I 3.04885 3.06912I
u = 1.081060 + 0.175049I
a = 1.261400 + 0.473225I
b = 1.00000
5.81224 1.32363I 10.31577 + 4.85297I
u = 1.081060 0.175049I
a = 1.261400 0.473225I
b = 1.00000
5.81224 + 1.32363I 10.31577 4.85297I
u = 0.806938 + 0.227524I
a = 0.543961 + 1.151740I
b = 1.00000
0.20654 2.41511I 3.04885 + 3.06912I
u = 0.806938 0.227524I
a = 0.543961 1.151740I
b = 1.00000
0.20654 + 2.41511I 3.04885 3.06912I
u = 1.44648 + 0.29078I
a = 0.694959 0.260721I
b = 1.00000
5.81224 1.32363I 10.31577 + 4.85297I
u = 1.44648 0.29078I
a = 0.694959 + 0.260721I
b = 1.00000
5.81224 + 1.32363I 10.31577 4.85297I
19
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.36551 + 1.07736I
a = 0.201428 1.007520I
b = 1.00000
18.6867 3.8928I 4.21617 + 1.99955I
u = 1.36551 1.07736I
a = 0.201428 + 1.007520I
b = 1.00000
18.6867 + 3.8928I 4.21617 1.99955I
u = 1.36052 + 1.15877I
a = 0.190806 + 0.954389I
b = 1.00000
18.6867 3.8928I 4.21617 + 1.99955I
u = 1.36052 1.15877I
a = 0.190806 0.954389I
b = 1.00000
18.6867 + 3.8928I 4.21617 1.99955I
20
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
5
u
4
u
3
+ 4u
2
3u + 1)(u
14
8u
13
+ ··· 9u + 1)
· (u
14
8u
13
+ ··· 1103u + 361)(u
16
+ 8u
15
+ ··· + 13u + 1)
c
2
, c
4
(u
5
+ u
4
+ u
3
+ 2u
2
+ u + 1)(u
14
4u
12
+ ··· + 39u + 19)
· (u
14
+ 4u
12
+ ··· u + 1)(u
16
+ 4u
14
+ ··· u + 1)
c
3
(u
5
+ 4u
4
+ 8u
3
+ 9u
2
+ 6u + 1)(u
7
2u
6
+ 2u
5
u
3
+ 2u
2
2u + 1)
2
· ((u
7
2u
6
+ 2u
5
+ u
3
2u
2
+ 2u 1)
2
)(u
16
+ 5u
15
+ ··· + 8u + 3)
c
5
, c
9
(u
5
u
4
+ u
3
2u
2
+ u 1)(u
14
4u
12
+ ··· + 39u + 19)
· (u
14
+ 4u
12
+ ··· + u + 1)(u
16
+ 4u
14
+ ··· u + 1)
c
6
, c
12
(u
5
+ 2u
4
u
3
2u
2
+ 1)(u
14
u
13
+ ··· + 724u + 253)
· (u
14
u
13
+ ··· + 2u + 1)(u
16
+ u
15
+ ··· + 2u + 1)
c
7
(u
5
+ 2u
4
+ 2u
3
+ 3u
2
+ 2u + 1)(u
14
3u
13
+ ··· 2u + 1)
· (u
14
3u
13
+ ··· + 350u + 67)(u
16
u
15
+ ··· + 14u + 17)
c
8
(u
5
5u
4
+ 6u
3
3u
2
+ u 1)(u
14
3u
13
+ ··· 210483u + 186979)
· (u
14
+ 3u
13
+ ··· + 3u + 1)(u
16
+ 7u
14
+ ··· + 13u + 5)
c
10
(u
5
+ u
4
u
3
4u
2
3u 1)(u
14
8u
13
+ ··· 1103u + 361)
· (u
14
+ 8u
13
+ ··· + 9u + 1)(u
16
+ 8u
15
+ ··· + 13u + 1)
c
11
(u
5
2u
4
u
3
+ 2u
2
1)(u
14
u
13
+ ··· + 724u + 253)
· (u
14
+ u
13
+ ··· 2u + 1)(u
16
+ u
15
+ ··· + 2u + 1)
21
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
5
3y
4
+ 3y
3
8y
2
+ y 1)(y
14
+ 4y
13
+ ··· 3y + 1)
· (y
14
+ 28y
13
+ ··· 313387y + 130321)(y
16
+ 32y
15
+ ··· 7y + 1)
c
2
, c
4
, c
5
c
9
(y
5
+ y
4
y
3
4y
2
3y 1)(y
14
8y
13
+ ··· 1103y + 361)
· (y
14
+ 8y
13
+ ··· + 9y + 1)(y
16
+ 8y
15
+ ··· + 13y + 1)
c
3
(y
5
+ 4y
3
+ ··· + 18y 1)(y
7
+ 2y
5
3y
3
1)
2
(y
7
+ 6y
5
+ 5y
3
1)
2
· (y
16
+ 3y
15
+ ··· + 104y + 9)
c
6
, c
11
, c
12
(y
5
6y
4
+ 9y
3
8y
2
+ 4y 1)(y
14
35y
13
+ ··· + 300098y + 64009)
· (y
14
11y
13
+ ··· 6y + 1)(y
16
23y
15
+ ··· 22y + 1)
c
7
(y
5
4y
3
5y
2
2y 1)(y
14
+ 11y
13
+ ··· + 2y + 1)
· (y
14
+ 31y
13
+ ··· + 16994y + 4489)
· (y
16
+ 27y
15
+ ··· + 2796y + 289)
c
8
(y
5
13y
4
+ 8y
3
7y
2
5y 1)(y
14
+ 3y
13
+ ··· + 17y + 1)
· (y
14
+ 103y
13
+ ··· 64089585027y + 34961146441)
· (y
16
+ 14y
15
+ ··· + 471y + 25)
22