12n
0368
(K12n
0368
)
A knot diagram
1
Linearized knot diagam
3 6 7 10 2 9 3 12 4 6 8 11
Solving Sequence
8,12 3,9
7 4 6 2 5 11 1 10
c
8
c
7
c
3
c
6
c
2
c
5
c
11
c
12
c
10
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h4.99290 × 10
29
u
27
9.04354 × 10
29
u
26
+ ··· + 1.48123 × 10
30
b + 2.22464 × 10
30
,
1.79527 × 10
31
u
27
3.40599 × 10
31
u
26
+ ··· + 4.44370 × 10
30
a + 1.93917 × 10
32
, u
28
2u
27
+ ··· + 15u 1i
I
u
2
= h−u
15
u
14
+ ··· + b 1, 6u
15
+ 2u
14
+ ··· + a 10,
u
16
5u
14
+ u
13
+ 13u
12
3u
11
23u
10
+ 6u
9
+ 29u
8
8u
7
26u
6
+ 8u
5
+ 16u
4
4u
3
6u
2
+ u + 1i
I
u
3
= hb 1, a 1, u + 1i
* 3 irreducible components of dim
C
= 0, with total 45 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h4.99×10
29
u
27
9.04×10
29
u
26
+· · ·+1.48×10
30
b+2.22×10
30
, 1.80×10
31
u
27
3.41 × 10
31
u
26
+ · · · + 4.44 × 10
30
a + 1.94 × 10
32
, u
28
2u
27
+ · · · + 15u 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
3
=
4.04003u
27
+ 7.66476u
26
+ ··· + 200.372u 43.6386
0.337077u
27
+ 0.610541u
26
+ ··· + 8.04513u 1.50188
a
9
=
1
u
2
a
7
=
4.84634u
27
9.14511u
26
+ ··· 218.138u + 47.6168
0.162770u
27
0.345209u
26
+ ··· 15.7091u + 2.22482
a
4
=
9.48708u
27
+ 18.0943u
26
+ ··· + 467.082u 96.8502
0.312623u
27
+ 0.470169u
26
+ ··· + 9.63585u 2.96138
a
6
=
4.97301u
27
9.41740u
26
+ ··· 230.480u + 49.2941
0.173164u
27
0.347370u
26
+ ··· 15.2980u + 2.20586
a
2
=
12.5790u
27
+ 23.8637u
26
+ ··· + 606.925u 129.004
0.600077u
27
+ 1.10181u
26
+ ··· + 27.4907u 4.83602
a
5
=
16.7676u
27
+ 31.8085u
26
+ ··· + 818.466u 172.294
0.699475u
27
+ 1.15355u
26
+ ··· + 25.6721u 5.70735
a
11
=
u
u
a
1
=
u
3
u
3
+ u
a
10
=
15.6689u
27
29.9384u
26
+ ··· 773.348u + 161.864
0.340769u
27
0.720300u
26
+ ··· 15.5800u + 4.83370
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.36235u
27
4.45969u
26
+ ··· 84.8018u + 5.95686
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
28
+ 56u
27
+ ··· + 733262u + 28561
c
2
, c
5
u
28
+ 2u
27
+ ··· 1450u 169
c
3
, c
7
u
28
4u
27
+ ··· + 156u + 23
c
4
, c
9
u
28
24u
26
+ ··· + 46u 43
c
6
u
28
3u
27
+ ··· u 1
c
8
, c
11
u
28
+ 2u
27
+ ··· 15u 1
c
10
u
28
63u
26
+ ··· + 129664u + 33653
c
12
u
28
+ 26u
27
+ ··· + 87u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
28
188y
27
+ ··· 348035375138y + 815730721
c
2
, c
5
y
28
56y
27
+ ··· 733262y + 28561
c
3
, c
7
y
28
+ 32y
27
+ ··· + 1516y + 529
c
4
, c
9
y
28
48y
27
+ ··· 11662y + 1849
c
6
y
28
3y
27
+ ··· 13y + 1
c
8
, c
11
y
28
26y
27
+ ··· 87y + 1
c
10
y
28
126y
27
+ ··· 33547178288y + 1132524409
c
12
y
28
38y
27
+ ··· 11231y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.906896 + 0.646886I
a = 0.018709 0.380835I
b = 0.638662 + 0.021294I
1.71311 + 2.54690I 1.43844 1.11774I
u = 0.906896 0.646886I
a = 0.018709 + 0.380835I
b = 0.638662 0.021294I
1.71311 2.54690I 1.43844 + 1.11774I
u = 0.967377 + 0.607852I
a = 0.156659 0.808047I
b = 0.094276 0.264187I
1.84113 4.28473I 9.39382 + 5.33049I
u = 0.967377 0.607852I
a = 0.156659 + 0.808047I
b = 0.094276 + 0.264187I
1.84113 + 4.28473I 9.39382 5.33049I
u = 1.213110 + 0.327569I
a = 0.57852 1.90768I
b = 0.26231 1.86751I
4.18195 + 4.33996I 13.7175 7.6147I
u = 1.213110 0.327569I
a = 0.57852 + 1.90768I
b = 0.26231 + 1.86751I
4.18195 4.33996I 13.7175 + 7.6147I
u = 0.614251 + 0.338068I
a = 0.531012 + 0.325089I
b = 0.489062 0.020644I
0.982240 + 0.119994I 8.17175 + 0.02561I
u = 0.614251 0.338068I
a = 0.531012 0.325089I
b = 0.489062 + 0.020644I
0.982240 0.119994I 8.17175 0.02561I
u = 0.696063
a = 0.481673
b = 0.373251
0.946260 10.4550
u = 1.257950 + 0.387635I
a = 0.74898 1.66086I
b = 0.123685 1.210180I
4.49564 1.87179I 14.6317 1.5633I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.257950 0.387635I
a = 0.74898 + 1.66086I
b = 0.123685 + 1.210180I
4.49564 + 1.87179I 14.6317 + 1.5633I
u = 0.07059 + 1.45889I
a = 0.0475163 0.0400773I
b = 0.21400 1.78782I
18.0323 + 4.3258I 11.73246 2.08575I
u = 0.07059 1.45889I
a = 0.0475163 + 0.0400773I
b = 0.21400 + 1.78782I
18.0323 4.3258I 11.73246 + 2.08575I
u = 1.50606
a = 1.25220
b = 3.31724
15.4303 22.9460
u = 0.036535 + 0.484008I
a = 0.642458 + 0.305211I
b = 0.141755 + 0.946555I
0.78712 1.33307I 6.90000 + 4.82501I
u = 0.036535 0.484008I
a = 0.642458 0.305211I
b = 0.141755 0.946555I
0.78712 + 1.33307I 6.90000 4.82501I
u = 1.57314 + 0.15250I
a = 0.34179 + 1.42667I
b = 0.20624 + 2.13211I
10.36200 + 1.52321I 13.77194 1.67469I
u = 1.57314 0.15250I
a = 0.34179 1.42667I
b = 0.20624 2.13211I
10.36200 1.52321I 13.77194 + 1.67469I
u = 1.61185
a = 0.871275
b = 0.575915
16.6517 17.2310
u = 1.61164 + 0.12556I
a = 0.01556 + 1.51530I
b = 0.42383 + 1.60874I
11.04510 + 5.13574I 13.9862 3.3545I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.61164 0.12556I
a = 0.01556 1.51530I
b = 0.42383 1.60874I
11.04510 5.13574I 13.9862 + 3.3545I
u = 0.055371 + 0.305690I
a = 1.91148 + 0.93139I
b = 0.441705 1.203630I
4.59867 3.49978I 13.2785 + 5.9062I
u = 0.055371 0.305690I
a = 1.91148 0.93139I
b = 0.441705 + 1.203630I
4.59867 + 3.49978I 13.2785 5.9062I
u = 1.56528 + 0.69723I
a = 0.61493 + 1.30760I
b = 0.73222 + 1.97314I
16.4052 11.9046I 13.05540 + 4.81403I
u = 1.56528 0.69723I
a = 0.61493 1.30760I
b = 0.73222 1.97314I
16.4052 + 11.9046I 13.05540 4.81403I
u = 1.53853 + 0.79216I
a = 0.793628 + 0.857092I
b = 0.34136 + 1.61067I
17.0288 + 3.5616I 13.06254 + 0.I
u = 1.53853 0.79216I
a = 0.793628 0.857092I
b = 0.34136 1.61067I
17.0288 3.5616I 13.06254 + 0.I
u = 0.0975704
a = 30.3600
b = 1.06939
10.1503 0.912190
7
II.
I
u
2
= h−u
15
u
14
+· · ·+b1, 6u
15
+2u
14
+· · ·+a10, u
16
5u
14
+· · ·+u+1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
3
=
6u
15
2u
14
+ ··· 15u + 10
u
15
+ u
14
+ ··· 4u + 1
a
9
=
1
u
2
a
7
=
5u
15
4u
14
+ ··· 10u + 13
3u
15
2u
14
+ ··· 2u + 3
a
4
=
13u
15
5u
14
+ ··· 30u + 25
u
14
u
13
+ ··· 5u + 1
a
6
=
6u
15
4u
14
+ ··· 11u + 12
3u
15
2u
14
+ ··· 3u + 3
a
2
=
16u
15
7u
14
+ ··· 35u + 29
3u
15
u
14
+ ··· 4u + 5
a
5
=
18u
15
+ 9u
14
+ ··· + 38u 40
u
15
+ 5u
13
+ ··· + 5u 4
a
11
=
u
u
a
1
=
u
3
u
3
+ u
a
10
=
21u
15
+ 11u
14
+ ··· + 40u 40
5u
15
+ 3u
14
+ ··· + 5u 9
(ii) Obstruction class = 1
(iii) Cusp Shapes = 13u
15
+ 4u
14
+ 60u
13
31u
12
141u
11
+ 76u
10
+ 230u
9
132u
8
260u
7
+ 157u
6
+ 200u
5
136u
4
96u
3
+ 62u
2
+ 25u 31
8
(iv) u-Polynomials at the component
9
Crossings u-Polynomials at each crossing
c
1
u
16
16u
15
+ ··· 8u + 1
c
2
u
16
+ 4u
15
+ ··· + 4u + 1
c
3
u
16
+ 4u
14
+ ··· 6u + 1
c
4
u
16
10u
14
+ ··· 2u 1
c
5
u
16
4u
15
+ ··· 4u + 1
c
6
u
16
3u
15
+ ··· 3u 1
c
7
u
16
+ 4u
14
+ ··· + 6u + 1
c
8
u
16
5u
14
+ ··· + u + 1
c
9
u
16
10u
14
+ ··· + 2u 1
c
10
u
16
+ 2u
15
+ ··· + 7u
2
1
c
11
u
16
5u
14
+ ··· u + 1
c
12
u
16
+ 10u
15
+ ··· + 13u + 1
10
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
52y
15
+ ··· + 20y + 1
c
2
, c
5
y
16
16y
15
+ ··· 8y + 1
c
3
, c
7
y
16
+ 8y
15
+ ··· 10y + 1
c
4
, c
9
y
16
20y
15
+ ··· + 4y + 1
c
6
y
16
+ y
15
+ ··· 15y + 1
c
8
, c
11
y
16
10y
15
+ ··· 13y + 1
c
10
y
16
38y
15
+ ··· 14y + 1
c
12
y
16
+ 2y
15
+ ··· 17y + 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.772761 + 0.712653I
a = 0.214642 + 0.139490I
b = 0.174212 + 0.983327I
3.18731 4.89171I 13.3342 + 7.1832I
u = 0.772761 0.712653I
a = 0.214642 0.139490I
b = 0.174212 0.983327I
3.18731 + 4.89171I 13.3342 7.1832I
u = 1.026470 + 0.385848I
a = 0.97974 2.34875I
b = 0.64749 1.56601I
6.20371 + 5.58512I 14.9139 6.6172I
u = 1.026470 0.385848I
a = 0.97974 + 2.34875I
b = 0.64749 + 1.56601I
6.20371 5.58512I 14.9139 + 6.6172I
u = 0.868992 + 0.775777I
a = 0.422206 0.337071I
b = 0.267354 + 0.100433I
1.11054 + 2.92387I 11.66623 5.71389I
u = 0.868992 0.775777I
a = 0.422206 + 0.337071I
b = 0.267354 0.100433I
1.11054 2.92387I 11.66623 + 5.71389I
u = 1.153510 + 0.323030I
a = 0.52474 1.80473I
b = 0.125626 1.307330I
4.07711 3.14561I 13.9405 + 2.6304I
u = 1.153510 0.323030I
a = 0.52474 + 1.80473I
b = 0.125626 + 1.307330I
4.07711 + 3.14561I 13.9405 2.6304I
u = 0.730829 + 0.328251I
a = 0.476380 0.106565I
b = 0.722249 + 1.146800I
5.07627 2.52540I 16.3893 + 0.5079I
u = 0.730829 0.328251I
a = 0.476380 + 0.106565I
b = 0.722249 1.146800I
5.07627 + 2.52540I 16.3893 0.5079I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.004110 + 0.721375I
a = 1.101500 0.625779I
b = 0.144368 1.128410I
3.89724 0.61018I 12.26838 + 0.63265I
u = 1.004110 0.721375I
a = 1.101500 + 0.625779I
b = 0.144368 + 1.128410I
3.89724 + 0.61018I 12.26838 0.63265I
u = 0.698430 + 0.203647I
a = 1.272980 + 0.463255I
b = 0.148546 + 0.648408I
2.24714 + 0.87508I 15.0335 1.9463I
u = 0.698430 0.203647I
a = 1.272980 0.463255I
b = 0.148546 0.648408I
2.24714 0.87508I 15.0335 + 1.9463I
u = 0.491820
a = 7.05656
b = 1.05815
10.4382 27.2890
u = 1.51322
a = 0.461470
b = 2.22988
14.7824 9.61910
14
III. I
u
3
= hb 1, a 1, u + 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
1
a
3
=
1
1
a
9
=
1
1
a
7
=
2
1
a
4
=
3
2
a
6
=
1
0
a
2
=
2
1
a
5
=
1
1
a
11
=
1
1
a
1
=
1
0
a
10
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
12
u + 1
c
4
, c
8
, c
9
c
10
, c
11
u 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
4.93480 18.0000
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u + 1)(u
16
16u
15
+ ··· 8u + 1)
· (u
28
+ 56u
27
+ ··· + 733262u + 28561)
c
2
(u + 1)(u
16
+ 4u
15
+ ··· + 4u + 1)(u
28
+ 2u
27
+ ··· 1450u 169)
c
3
(u + 1)(u
16
+ 4u
14
+ ··· 6u + 1)(u
28
4u
27
+ ··· + 156u + 23)
c
4
(u 1)(u
16
10u
14
+ ··· 2u 1)(u
28
24u
26
+ ··· + 46u 43)
c
5
(u + 1)(u
16
4u
15
+ ··· 4u + 1)(u
28
+ 2u
27
+ ··· 1450u 169)
c
6
(u + 1)(u
16
3u
15
+ ··· 3u 1)(u
28
3u
27
+ ··· u 1)
c
7
(u + 1)(u
16
+ 4u
14
+ ··· + 6u + 1)(u
28
4u
27
+ ··· + 156u + 23)
c
8
(u 1)(u
16
5u
14
+ ··· + u + 1)(u
28
+ 2u
27
+ ··· 15u 1)
c
9
(u 1)(u
16
10u
14
+ ··· + 2u 1)(u
28
24u
26
+ ··· + 46u 43)
c
10
(u 1)(u
16
+ 2u
15
+ ··· + 7u
2
1)
· (u
28
63u
26
+ ··· + 129664u + 33653)
c
11
(u 1)(u
16
5u
14
+ ··· u + 1)(u
28
+ 2u
27
+ ··· 15u 1)
c
12
(u + 1)(u
16
+ 10u
15
+ ··· + 13u + 1)(u
28
+ 26u
27
+ ··· + 87u + 1)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)(y
16
52y
15
+ ··· + 20y + 1)
· (y
28
188y
27
+ ··· 348035375138y + 815730721)
c
2
, c
5
(y 1)(y
16
16y
15
+ ··· 8y + 1)
· (y
28
56y
27
+ ··· 733262y + 28561)
c
3
, c
7
(y 1)(y
16
+ 8y
15
+ ··· 10y + 1)(y
28
+ 32y
27
+ ··· + 1516y + 529)
c
4
, c
9
(y 1)(y
16
20y
15
+ ··· + 4y + 1)(y
28
48y
27
+ ··· 11662y + 1849)
c
6
(y 1)(y
16
+ y
15
+ ··· 15y + 1)(y
28
3y
27
+ ··· 13y + 1)
c
8
, c
11
(y 1)(y
16
10y
15
+ ··· 13y + 1)(y
28
26y
27
+ ··· 87y + 1)
c
10
(y 1)(y
16
38y
15
+ ··· 14y + 1)
· (y
28
126y
27
+ ··· 33547178288y + 1132524409)
c
12
(y 1)(y
16
+ 2y
15
+ ··· 17y + 1)(y
28
38y
27
+ ··· 11231y + 1)
20