10
161
(K10n
31
)
A knot diagram
1
Linearized knot diagam
7 9 7 2 9 1 3 6 4 2
Solving Sequence
2,9 3,7
4 1 6 5 8 10
c
2
c
3
c
1
c
6
c
5
c
8
c
10
c
4
, c
7
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−29u
5
+ 62u
4
233u
3
17u
2
+ 73b 178u 27, 15u
5
+ 22u
4
118u
3
39u
2
+ 73a 228u 19,
u
6
2u
5
+ 8u
4
+ u
3
+ 7u
2
u 1i
I
u
2
= hu
2
+ b + u, u
3
+ u
2
+ a u, u
4
+ u
3
1i
* 2 irreducible components of dim
C
= 0, with total 10 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−29u
5
+ 62u
4
+ · · · + 73b 27, 15u
5
+ 22u
4
+ · · · + 73a 19, u
6
2u
5
+ 8u
4
+ u
3
+ 7u
2
u 1i
(i) Arc colorings
a
2
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
7
=
0.205479u
5
0.301370u
4
+ ··· + 3.12329u + 0.260274
0.397260u
5
0.849315u
4
+ ··· + 2.43836u + 0.369863
a
4
=
0.260274u
5
0.315068u
4
+ ··· + 2.35616u + 1.86301
0.260274u
5
0.315068u
4
+ ··· + 2.35616u + 0.863014
a
1
=
0.205479u
5
+ 0.301370u
4
+ ··· 3.12329u 0.260274
0.452055u
5
+ 0.863014u
4
+ ··· 2.67123u 0.972603
a
6
=
1
0.260274u
5
+ 0.315068u
4
+ ··· 2.35616u 0.863014
a
5
=
1
0.260274u
5
+ 0.315068u
4
+ ··· 2.35616u 0.863014
a
8
=
u
0.205479u
5
0.301370u
4
+ ··· + 2.12329u + 0.260274
a
10
=
0.657534u
5
+ 1.16438u
4
+ ··· 5.79452u 1.23288
0.452055u
5
+ 0.863014u
4
+ ··· 2.67123u 0.972603
(ii) Obstruction class = 1
(iii) Cusp Shapes =
145
73
u
5
310
73
u
4
+
1165
73
u
3
+
85
73
u
2
+
744
73
u
887
73
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
6
6u
5
+ 16u
4
21u
3
+ 11u
2
+ 2u 4
c
2
, c
5
, c
8
u
6
2u
5
+ 8u
4
+ u
3
+ 7u
2
u 1
c
3
, c
7
, c
9
u
6
+ u
5
+ 9u
4
11u
3
4u
2
2u 1
c
4
u
6
3u
5
3u
4
+ 15u
3
10u
2
+ 1
c
10
u
6
+ 4u
5
+ 26u
4
+ 73u
3
+ 77u
2
+ 92u + 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
6
4y
5
+ 26y
4
73y
3
+ 77y
2
92y + 16
c
2
, c
5
, c
8
y
6
+ 12y
5
+ 82y
4
+ 105y
3
+ 35y
2
15y + 1
c
3
, c
7
, c
9
y
6
+ 17y
5
+ 95y
4
191y
3
46y
2
+ 4y + 1
c
4
y
6
15y
5
+ 79y
4
163y
3
+ 94y
2
20y + 1
c
10
y
6
+ 36y
5
+ 246y
4
2029y
3
6671y
2
6000y + 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.244201 + 0.971888I
a = 0.24405 + 1.39509I
b = 0.878332 0.695514I
2.08576 + 2.67800I 9.11994 5.42135I
u = 0.244201 0.971888I
a = 0.24405 1.39509I
b = 0.878332 + 0.695514I
2.08576 2.67800I 9.11994 + 5.42135I
u = 0.403945
a = 1.70981
b = 1.58486
7.78420 6.88360
u = 0.304480
a = 0.689933
b = 0.449415
0.637429 15.6380
u = 1.19447 + 2.58259I
a = 0.234107 0.606474I
b = 1.55395 + 1.43504I
13.6396 5.6388I 8.61921 + 2.01004I
u = 1.19447 2.58259I
a = 0.234107 + 0.606474I
b = 1.55395 1.43504I
13.6396 + 5.6388I 8.61921 2.01004I
5
II. I
u
2
= hu
2
+ b + u, u
3
+ u
2
+ a u, u
4
+ u
3
1i
(i) Arc colorings
a
2
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
7
=
u
3
u
2
+ u
u
2
u
a
4
=
u
2
+ u
u
2
+ u + 1
a
1
=
u
3
+ u
2
u
u
3
u
2
1
a
6
=
1
u + 1
a
5
=
1
u
2
+ u + 1
a
8
=
u
u
2
a
10
=
u 1
u
3
u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
3
7u
2
7u 10
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
2u
2
+ u + 1
c
2
, c
8
u
4
+ u
3
1
c
3
, c
9
u
4
+ u 1
c
4
u
4
+ 4u
3
+ 4u
2
+ u + 1
c
5
u
4
u
3
1
c
6
u
4
2u
2
u + 1
c
7
u
4
u 1
c
10
u
4
4u
3
+ 6u
2
5u + 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
4
4y
3
+ 6y
2
5y + 1
c
2
, c
5
, c
8
y
4
y
3
2y
2
+ 1
c
3
, c
7
, c
9
y
4
2y
2
y + 1
c
4
y
4
8y
3
+ 10y
2
+ 7y + 1
c
10
y
4
4y
3
2y
2
13y + 1
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.219447 + 0.914474I
a = 0.02868 + 1.94846I
b = 1.007550 0.513116I
3.04135 + 1.96274I 4.02709 2.32656I
u = 0.219447 0.914474I
a = 0.02868 1.94846I
b = 1.007550 + 0.513116I
3.04135 1.96274I 4.02709 + 2.32656I
u = 0.819173
a = 0.401572
b = 1.49022
8.36260 21.5310
u = 1.38028
a = 0.655786
b = 0.524889
4.29983 8.41490
9
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
4
2u
2
+ u + 1)(u
6
6u
5
+ 16u
4
21u
3
+ 11u
2
+ 2u 4)
c
2
, c
8
(u
4
+ u
3
1)(u
6
2u
5
+ 8u
4
+ u
3
+ 7u
2
u 1)
c
3
, c
9
(u
4
+ u 1)(u
6
+ u
5
+ 9u
4
11u
3
4u
2
2u 1)
c
4
(u
4
+ 4u
3
+ 4u
2
+ u + 1)(u
6
3u
5
3u
4
+ 15u
3
10u
2
+ 1)
c
5
(u
4
u
3
1)(u
6
2u
5
+ 8u
4
+ u
3
+ 7u
2
u 1)
c
6
(u
4
2u
2
u + 1)(u
6
6u
5
+ 16u
4
21u
3
+ 11u
2
+ 2u 4)
c
7
(u
4
u 1)(u
6
+ u
5
+ 9u
4
11u
3
4u
2
2u 1)
c
10
(u
4
4u
3
+ 6u
2
5u + 1)(u
6
+ 4u
5
+ ··· + 92u + 16)
10
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
4
4y
3
+ 6y
2
5y + 1)(y
6
4y
5
+ ··· 92y + 16)
c
2
, c
5
, c
8
(y
4
y
3
2y
2
+ 1)(y
6
+ 12y
5
+ 82y
4
+ 105y
3
+ 35y
2
15y + 1)
c
3
, c
7
, c
9
(y
4
2y
2
y + 1)(y
6
+ 17y
5
+ 95y
4
191y
3
46y
2
+ 4y + 1)
c
4
(y
4
8y
3
+ 10y
2
+ 7y + 1)(y
6
15y
5
+ ··· 20y + 1)
c
10
(y
4
4y
3
2y
2
13y + 1)
· (y
6
+ 36y
5
+ 246y
4
2029y
3
6671y
2
6000y + 256)
11