12n
0371
(K12n
0371
)
A knot diagram
1
Linearized knot diagam
3 6 8 10 2 11 5 12 4 6 10 8
Solving Sequence
2,6 3,11
7 1 5 8 10 4 12 9
c
2
c
6
c
1
c
5
c
7
c
10
c
4
c
12
c
8
c
3
, c
9
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h2u
13
7u
12
+ 11u
11
7u
10
+ 10u
9
33u
8
+ 54u
7
34u
6
+ u
5
+ 5u
4
+ u
3
+ 4u
2
+ b 5u + 1,
2u
13
7u
12
+ 11u
11
7u
10
+ 10u
9
33u
8
+ 54u
7
34u
6
+ u
5
+ 5u
4
+ u
3
+ 4u
2
+ a 6u + 1,
u
15
4u
14
+ 7u
13
5u
12
+ 4u
11
16u
10
+ 33u
9
25u
8
4u
7
+ 17u
6
6u
5
u
4
2u
3
+ 2u
2
+ u 1i
I
u
2
= hu
9
+ 3u
8
+ 4u
7
4u
5
4u
4
+ b + u, u
9
+ 3u
8
+ 4u
7
4u
5
4u
4
+ a, u
10
+ 3u
9
+ 4u
8
4u
6
4u
5
+ u
3
+ u
2
1i
* 2 irreducible components of dim
C
= 0, with total 25 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h2u
13
7u
12
+· · ·+b+1, 2u
13
7u
12
+· · ·+a+1, u
15
4u
14
+· · ·+u1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
11
=
2u
13
+ 7u
12
+ ··· + 6u 1
2u
13
+ 7u
12
+ ··· + 5u 1
a
7
=
3u
13
+ 11u
12
+ ··· + 7u 2
u
14
6u
13
+ ··· 6u
2
+ 6u
a
1
=
u
2
+ 1
u
4
a
5
=
u
u
a
8
=
3u
13
+ 11u
12
+ ··· + 7u 3
u
14
6u
13
+ ··· + 6u 1
a
10
=
2u
13
+ 7u
12
+ ··· + 6u 1
u
14
+ u
13
+ ··· + 7u 3
a
4
=
u
11
2u
10
+ u
9
+ 5u
7
10u
6
+ 5u
5
+ u
3
u
2
+ 1
u
13
2u
12
+ 2u
11
u
10
+ 5u
9
10u
8
+ 10u
7
5u
6
+ u
5
u
4
+ u
3
+ u
2
a
12
=
u
12
+ 3u
11
+ ··· 2u
2
+ 1
u
14
+ 3u
13
+ ··· 3u
4
+ u
3
a
9
=
u
13
5u
12
+ ··· 6u + 3
u
14
2u
13
+ ··· 7u + 5
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
13
14u
12
+ 19u
11
7u
10
+ 13u
9
68u
8
+ 98u
7
35u
6
33u
5
+ 23u
3
+ 3u
2
14u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
+ 2u
14
+ ··· + 5u + 1
c
2
, c
5
u
15
+ 4u
14
+ ··· + u + 1
c
3
u
15
10u
13
+ ··· + 4u + 1
c
4
, c
7
, c
9
u
15
u
14
+ ··· + 2u + 1
c
6
, c
10
u
15
+ 14u
14
+ ··· + 240u + 32
c
8
, c
12
u
15
+ 4u
14
+ ··· + 9u + 1
c
11
u
15
10u
14
+ ··· + 12032u 1024
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
+ 30y
14
+ ··· + 5y 1
c
2
, c
5
y
15
2y
14
+ ··· + 5y 1
c
3
y
15
20y
14
+ ··· 2y 1
c
4
, c
7
, c
9
y
15
35y
14
+ ··· 6y 1
c
6
, c
10
y
15
10y
14
+ ··· + 12032y 1024
c
8
, c
12
y
15
+ 24y
14
+ ··· + 89y 1
c
11
y
15
+ 78y
14
+ ··· + 66256896y 1048576
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.712549 + 0.633880I
a = 0.274451 1.191860I
b = 0.43810 1.82574I
1.05212 4.72304I 2.71866 + 7.35913I
u = 0.712549 0.633880I
a = 0.274451 + 1.191860I
b = 0.43810 + 1.82574I
1.05212 + 4.72304I 2.71866 7.35913I
u = 0.815797 + 0.485623I
a = 1.042200 + 0.113566I
b = 0.226400 0.372057I
1.57751 + 0.34385I 3.36524 0.94481I
u = 0.815797 0.485623I
a = 1.042200 0.113566I
b = 0.226400 + 0.372057I
1.57751 0.34385I 3.36524 + 0.94481I
u = 0.766118
a = 0.453886
b = 0.312232
1.00577 12.0370
u = 0.635896 + 0.026087I
a = 1.32826 1.25555I
b = 0.69236 1.28163I
3.88717 + 2.88458I 6.82119 + 2.09374I
u = 0.635896 0.026087I
a = 1.32826 + 1.25555I
b = 0.69236 + 1.28163I
3.88717 2.88458I 6.82119 2.09374I
u = 0.289639 + 0.547664I
a = 0.006426 + 1.347820I
b = 0.283213 + 0.800152I
1.30871 + 0.90771I 3.11296 2.32958I
u = 0.289639 0.547664I
a = 0.006426 1.347820I
b = 0.283213 0.800152I
1.30871 0.90771I 3.11296 + 2.32958I
u = 1.07267 + 0.99560I
a = 0.05227 1.45647I
b = 1.02040 2.45206I
11.1785 9.6087I 3.50462 + 4.00725I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.07267 0.99560I
a = 0.05227 + 1.45647I
b = 1.02040 + 2.45206I
11.1785 + 9.6087I 3.50462 4.00725I
u = 0.99469 + 1.08421I
a = 1.49910 0.14023I
b = 0.504408 1.224440I
10.84830 + 1.98719I 3.37763 0.18602I
u = 0.99469 1.08421I
a = 1.49910 + 0.14023I
b = 0.504408 + 1.224440I
10.84830 1.98719I 3.37763 + 0.18602I
u = 1.05323 + 1.04849I
a = 0.760279 0.943123I
b = 0.29295 1.99161I
10.46600 + 3.87226I 4.30716 1.63349I
u = 1.05323 1.04849I
a = 0.760279 + 0.943123I
b = 0.29295 + 1.99161I
10.46600 3.87226I 4.30716 + 1.63349I
6
II. I
u
2
= hu
9
+ 3u
8
+ 4u
7
4u
5
4u
4
+ b + u, u
9
+ 3u
8
+ 4u
7
4u
5
4u
4
+
a, u
10
+ 3u
9
+ 4u
8
4u
6
4u
5
+ u
3
+ u
2
1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
11
=
u
9
3u
8
4u
7
+ 4u
5
+ 4u
4
u
9
3u
8
4u
7
+ 4u
5
+ 4u
4
u
a
7
=
u
9
+ 3u
8
+ 4u
7
3u
5
2u
4
+ u
3
u
2
u
u
9
+ 3u
8
+ 4u
7
3u
5
3u
4
u
2
+ u
a
1
=
u
2
+ 1
u
4
a
5
=
u
u
a
8
=
u
9
+ 3u
8
+ 4u
7
+ u
6
2u
5
2u
4
u
3
u
2
u
u
9
+ 3u
8
+ 4u
7
+ u
6
2u
5
3u
4
2u
3
u
2
+ u
a
10
=
u
9
3u
8
4u
7
+ 4u
5
+ 4u
4
u
9
3u
8
4u
7
+ 4u
5
+ 5u
4
+ u
3
2u
a
4
=
u
7
2u
6
u
5
+ 3u
4
+ 3u
3
u
u
9
2u
8
2u
7
+ 2u
6
+ 3u
5
+ 3u
4
u
3
u
a
12
=
u
8
3u
7
3u
6
+ 2u
5
+ 6u
4
+ 3u
3
2u
2
2u
u
6
+ 2u
5
+ u
4
u
3
u
2
u 1
a
9
=
u
8
3u
7
3u
6
+ 2u
5
+ 5u
4
+ u
3
2u
2
+ 1
u
8
2u
7
2u
6
+ u
5
+ 2u
4
+ 2u
3
+ u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
9
6u
7
13u
6
3u
5
+ 11u
4
+ 16u
3
+ 5u
2
+ u 8
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
u
9
+ 8u
8
8u
7
+ 12u
6
10u
5
8u
4
+ 7u
3
+ u
2
2u + 1
c
2
u
10
+ 3u
9
+ 4u
8
4u
6
4u
5
+ u
3
+ u
2
1
c
3
u
10
u
9
+ 3u
8
5u
6
+ 5u
5
11u
4
+ 10u
3
5u
2
+ 5u 1
c
4
, c
7
u
10
+ u
8
+ 3u
7
+ 5u
5
+ 10u
4
+ 13u
3
+ 11u
2
+ 7u + 1
c
5
u
10
3u
9
+ 4u
8
4u
6
+ 4u
5
u
3
+ u
2
1
c
6
u
10
5u
8
+ 3u
7
+ 10u
6
8u
5
6u
4
+ 8u
3
+ 2u
2
3u 1
c
8
u
10
+ 3u
9
+ 3u
8
+ u
7
4u
6
9u
5
6u
4
+ 3u
3
+ 11u
2
+ 2u 1
c
9
u
10
+ u
8
3u
7
5u
5
+ 10u
4
13u
3
+ 11u
2
7u + 1
c
10
u
10
5u
8
3u
7
+ 10u
6
+ 8u
5
6u
4
8u
3
+ 2u
2
+ 3u 1
c
11
u
10
10u
9
+ ··· 13u + 1
c
12
u
10
3u
9
+ 3u
8
u
7
4u
6
+ 9u
5
6u
4
3u
3
+ 11u
2
2u 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
10
+ 15y
9
+ ··· 2y + 1
c
2
, c
5
y
10
y
9
+ 8y
8
8y
7
+ 12y
6
10y
5
8y
4
+ 7y
3
+ y
2
2y + 1
c
3
y
10
+ 5y
9
y
8
42y
7
31y
6
+ 63y
5
+ 65y
4
30y
3
53y
2
15y + 1
c
4
, c
7
, c
9
y
10
+ 2y
9
+ y
8
+ 11y
7
+ 12y
6
79y
5
70y
4
19y
3
41y
2
27y + 1
c
6
, c
10
y
10
10y
9
+ ··· 13y + 1
c
8
, c
12
y
10
3y
9
5y
8
+ 17y
7
+ 2y
6
+ 13y
5
8y
4
97y
3
+ 121y
2
26y + 1
c
11
y
10
10y
9
+ ··· 41y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.957717
a = 0.830787
b = 0.126929
0.427947 4.64810
u = 0.857224
a = 1.04417
b = 1.90139
4.84848 11.3010
u = 0.138927 + 0.799162I
a = 0.54714 + 1.79172I
b = 0.408212 + 0.992555I
1.32406 + 2.21202I 2.09245 1.71917I
u = 0.138927 0.799162I
a = 0.54714 1.79172I
b = 0.408212 0.992555I
1.32406 2.21202I 2.09245 + 1.71917I
u = 0.931721 + 0.885936I
a = 0.284841 0.228994I
b = 0.646880 1.114930I
6.28538 + 3.27846I 3.95412 2.52602I
u = 0.931721 0.885936I
a = 0.284841 + 0.228994I
b = 0.646880 + 1.114930I
6.28538 3.27846I 3.95412 + 2.52602I
u = 0.602982 + 0.323142I
a = 0.42625 + 1.40330I
b = 1.02923 + 1.08016I
3.73438 3.52182I 4.49714 + 9.15215I
u = 0.602982 0.323142I
a = 0.42625 1.40330I
b = 1.02923 1.08016I
3.73438 + 3.52182I 4.49714 9.15215I
u = 1.08258 + 1.10501I
a = 0.679245 0.825748I
b = 0.40334 1.93075I
11.28090 + 4.04196I 5.87002 3.50031I
u = 1.08258 1.10501I
a = 0.679245 + 0.825748I
b = 0.40334 + 1.93075I
11.28090 4.04196I 5.87002 + 3.50031I
10
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
10
u
9
+ 8u
8
8u
7
+ 12u
6
10u
5
8u
4
+ 7u
3
+ u
2
2u + 1)
· (u
15
+ 2u
14
+ ··· + 5u + 1)
c
2
(u
10
+ 3u
9
+ ··· + u
2
1)(u
15
+ 4u
14
+ ··· + u + 1)
c
3
(u
10
u
9
+ 3u
8
5u
6
+ 5u
5
11u
4
+ 10u
3
5u
2
+ 5u 1)
· (u
15
10u
13
+ ··· + 4u + 1)
c
4
, c
7
(u
10
+ u
8
+ 3u
7
+ 5u
5
+ 10u
4
+ 13u
3
+ 11u
2
+ 7u + 1)
· (u
15
u
14
+ ··· + 2u + 1)
c
5
(u
10
3u
9
+ ··· + u
2
1)(u
15
+ 4u
14
+ ··· + u + 1)
c
6
(u
10
5u
8
+ 3u
7
+ 10u
6
8u
5
6u
4
+ 8u
3
+ 2u
2
3u 1)
· (u
15
+ 14u
14
+ ··· + 240u + 32)
c
8
(u
10
+ 3u
9
+ 3u
8
+ u
7
4u
6
9u
5
6u
4
+ 3u
3
+ 11u
2
+ 2u 1)
· (u
15
+ 4u
14
+ ··· + 9u + 1)
c
9
(u
10
+ u
8
3u
7
5u
5
+ 10u
4
13u
3
+ 11u
2
7u + 1)
· (u
15
u
14
+ ··· + 2u + 1)
c
10
(u
10
5u
8
3u
7
+ 10u
6
+ 8u
5
6u
4
8u
3
+ 2u
2
+ 3u 1)
· (u
15
+ 14u
14
+ ··· + 240u + 32)
c
11
(u
10
10u
9
+ ··· 13u + 1)(u
15
10u
14
+ ··· + 12032u 1024)
c
12
(u
10
3u
9
+ 3u
8
u
7
4u
6
+ 9u
5
6u
4
3u
3
+ 11u
2
2u 1)
· (u
15
+ 4u
14
+ ··· + 9u + 1)
11
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
10
+ 15y
9
+ ··· 2y + 1)(y
15
+ 30y
14
+ ··· + 5y 1)
c
2
, c
5
(y
10
y
9
+ 8y
8
8y
7
+ 12y
6
10y
5
8y
4
+ 7y
3
+ y
2
2y + 1)
· (y
15
2y
14
+ ··· + 5y 1)
c
3
(y
10
+ 5y
9
y
8
42y
7
31y
6
+ 63y
5
+ 65y
4
30y
3
53y
2
15y + 1)
· (y
15
20y
14
+ ··· 2y 1)
c
4
, c
7
, c
9
(y
10
+ 2y
9
+ y
8
+ 11y
7
+ 12y
6
79y
5
70y
4
19y
3
41y
2
27y + 1)
· (y
15
35y
14
+ ··· 6y 1)
c
6
, c
10
(y
10
10y
9
+ ··· 13y + 1)(y
15
10y
14
+ ··· + 12032y 1024)
c
8
, c
12
(y
10
3y
9
5y
8
+ 17y
7
+ 2y
6
+ 13y
5
8y
4
97y
3
+ 121y
2
26y + 1)
· (y
15
+ 24y
14
+ ··· + 89y 1)
c
11
(y
10
10y
9
+ ··· 41y + 1)
· (y
15
+ 78y
14
+ ··· + 66256896y 1048576)
12