12n
0374
(K12n
0374
)
A knot diagram
1
Linearized knot diagam
3 6 8 10 2 11 3 12 4 6 9 7
Solving Sequence
6,10
11
3,7
8 2 1 5 4 9 12
c
10
c
6
c
7
c
2
c
1
c
5
c
4
c
9
c
12
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−301149306547334u
15
405785743495567u
14
+ ··· + 5460935417391053b 2324129620964575,
2521976827730410u
15
+ 4134029936992622u
14
+ ··· + 5460935417391053a 8351550389039156,
u
16
+ 2u
15
+ ··· + u 1i
I
u
2
= hu
9
+ u
8
2u
7
+ 2u
6
+ 3u
5
6u
4
+ 2u
2
+ b 2u 1,
u
10
4u
8
+ 2u
7
+ 4u
6
6u
5
+ u
4
+ 4u
3
u
2
+ a u + 1,
u
11
+ u
10
3u
9
+ 5u
7
4u
6
4u
5
+ 4u
4
+ u
3
3u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 27 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−3.01×10
14
u
15
4.06×10
14
u
14
+· · ·+5.46×10
15
b2.32×10
15
, 2.52×
10
15
u
15
+4.13×10
15
u
14
+· · ·+5.46×10
15
a8.35×10
15
, u
16
+2u
15
+· · ·+u1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
0.461821u
15
0.757019u
14
+ ··· + 1.13267u + 1.52933
0.0551461u
15
+ 0.0743070u
14
+ ··· 1.30799u + 0.425592
a
7
=
u
u
3
+ u
a
8
=
1.16646u
15
2.14400u
14
+ ··· 0.648553u + 1.23228
0.142447u
15
+ 0.241985u
14
+ ··· 2.03492u + 0.447884
a
2
=
0.461821u
15
0.757019u
14
+ ··· + 1.13267u + 1.52933
0.0215283u
15
+ 0.0644709u
14
+ ··· 0.679549u + 0.258968
a
1
=
1.49486u
15
+ 2.51422u
14
+ ··· 4.17011u 0.263898
0.226698u
15
0.0915071u
14
+ ··· + 4.12577u 0.807954
a
5
=
1.28737u
15
+ 2.32151u
14
+ ··· 1.70682u 1.04336
0.120918u
15
0.177515u
14
+ ··· + 2.35537u 0.188916
a
4
=
1.16646u
15
+ 2.14400u
14
+ ··· + 0.648553u 1.23228
0.120918u
15
0.177515u
14
+ ··· + 2.35537u 0.188916
a
9
=
0.802633u
15
+ 1.98845u
14
+ ··· + 8.96383u 3.11463
0.352889u
15
0.635726u
14
+ ··· + 0.487447u + 0.504102
a
12
=
1.38603u
15
+ 2.45156u
14
+ ··· 2.59193u 0.500660
0.149090u
15
0.0711014u
14
+ ··· + 2.28378u 0.416208
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
9739656845787569
5460935417391053
u
15
17595322506035493
5460935417391053
u
14
+ ···+
16486080638841760
5460935417391053
u
93508315704564998
5460935417391053
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
22u
15
+ ··· + 28u + 1
c
2
, c
5
u
16
+ 4u
15
+ ··· 2u 1
c
3
, c
7
u
16
14u
15
+ ··· + 152u
2
32
c
4
, c
9
u
16
+ u
15
+ ··· 184u 85
c
6
, c
10
u
16
2u
15
+ ··· u 1
c
8
, c
11
u
16
2u
15
+ ··· + 2u + 1
c
12
u
16
+ 8u
15
+ ··· 17328u 2417
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
+ 14y
15
+ ··· 540y + 1
c
2
, c
5
y
16
+ 22y
15
+ ··· 28y + 1
c
3
, c
7
y
16
14y
15
+ ··· 9728y + 1024
c
4
, c
9
y
16
+ 15y
15
+ ··· 36576y + 7225
c
6
, c
10
y
16
+ 20y
15
+ ··· 9y + 1
c
8
, c
11
y
16
+ 10y
15
+ ··· 14y + 1
c
12
y
16
+ 38y
15
+ ··· 113705856y + 5841889
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.709961 + 0.302018I
a = 0.067289 0.371265I
b = 1.56748 + 0.56103I
2.10600 5.42693I 16.6708 + 2.3025I
u = 0.709961 0.302018I
a = 0.067289 + 0.371265I
b = 1.56748 0.56103I
2.10600 + 5.42693I 16.6708 2.3025I
u = 0.624053 + 0.414470I
a = 0.036931 + 0.619361I
b = 0.268149 + 0.147042I
2.12989 + 2.00985I 8.08247 3.69887I
u = 0.624053 0.414470I
a = 0.036931 0.619361I
b = 0.268149 0.147042I
2.12989 2.00985I 8.08247 + 3.69887I
u = 0.603403
a = 0.346440
b = 1.97720
5.59033 13.4830
u = 0.365789 + 0.462196I
a = 0.36041 1.55398I
b = 0.667180 + 0.526239I
0.228166 + 0.909617I 12.89785 1.13498I
u = 0.365789 0.462196I
a = 0.36041 + 1.55398I
b = 0.667180 0.526239I
0.228166 0.909617I 12.89785 + 1.13498I
u = 0.222804 + 0.369878I
a = 1.57769 + 3.86659I
b = 0.82840 1.19204I
8.61028 1.60803I 19.3772 + 7.1837I
u = 0.222804 0.369878I
a = 1.57769 3.86659I
b = 0.82840 + 1.19204I
8.61028 + 1.60803I 19.3772 7.1837I
u = 0.325252
a = 0.778005
b = 0.326406
0.534698 18.5610
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.14699 + 2.11502I
a = 1.050490 + 0.062469I
b = 5.41647 + 5.13168I
5.95217 5.11511I 14.9917 + 2.0744I
u = 1.14699 2.11502I
a = 1.050490 0.062469I
b = 5.41647 5.13168I
5.95217 + 5.11511I 14.9917 2.0744I
u = 0.86624 + 2.26332I
a = 1.018240 + 0.164220I
b = 6.83232 + 3.44115I
10.23600 + 0.21137I 11.36887 + 0.55661I
u = 0.86624 2.26332I
a = 1.018240 0.164220I
b = 6.83232 3.44115I
10.23600 0.21137I 11.36887 0.55661I
u = 1.37057 + 2.24654I
a = 1.136800 + 0.049742I
b = 5.77240 + 7.05674I
9.6708 + 10.3555I 12.00000 4.83541I
u = 1.37057 2.24654I
a = 1.136800 0.049742I
b = 5.77240 7.05674I
9.6708 10.3555I 12.00000 + 4.83541I
6
II.
I
u
2
= hu
9
+ u
8
+ · · · + b 1, u
10
4u
8
+ · · · + a + 1, u
11
+ u
10
+ · · · 3u
2
+ 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
u
10
+ 4u
8
2u
7
4u
6
+ 6u
5
u
4
4u
3
+ u
2
+ u 1
u
9
u
8
+ 2u
7
2u
6
3u
5
+ 6u
4
2u
2
+ 2u + 1
a
7
=
u
u
3
+ u
a
8
=
u
9
u
8
+ 3u
7
5u
5
+ 3u
4
+ 3u
3
2u
2
u + 1
2u
9
+ 2u
8
5u
7
+ 6u
5
6u
4
3u
3
+ 2u
2
u 1
a
2
=
u
10
+ 4u
8
2u
7
4u
6
+ 6u
5
u
4
4u
3
+ u
2
+ u 1
2u
9
2u
8
+ 5u
7
u
6
7u
5
+ 8u
4
+ 3u
3
4u
2
+ u + 2
a
1
=
u
9
+ u
8
3u
7
u
6
+ 4u
5
u
4
2u
3
2u
9
3u
8
+ 4u
7
+ 3u
6
4u
5
+ 2u
4
+ u
3
+ u
2
+ u
a
5
=
u
9
+ u
8
3u
7
u
6
+ 4u
5
u
4
3u
3
+ 2u
u
6
+ u
5
2u
4
+ 2u
2
u 1
a
4
=
u
9
+ u
8
3u
7
+ 5u
5
3u
4
3u
3
+ 2u
2
+ u 1
u
6
+ u
5
2u
4
+ 2u
2
u 1
a
9
=
u
8
+ u
7
3u
6
2u
5
+ 3u
4
3u
2
+ 2
u
10
+ u
9
3u
8
u
7
+ 4u
6
2u
5
3u
4
+ 2u
3
u
a
12
=
u
4
2u
2
+ 1
u
9
u
8
+ 2u
7
2u
5
+ 2u
4
+ u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
10
+ 10u
9
2u
8
14u
7
+ 9u
6
+ 15u
5
26u
4
23u
3
+ 22u
2
2u 29
7
(iv) u-Polynomials at the component
8
Crossings u-Polynomials at each crossing
c
1
u
11
9u
10
+ ··· + 5u 1
c
2
u
11
+ 3u
10
6u
8
2u
7
+ 2u
6
+ 3u
5
+ 4u
4
+ 2u
3
2u
2
3u 1
c
3
u
11
+ 2u
10
+ ··· 5u + 1
c
4
u
11
4u
9
6u
8
+ 10u
7
+ 23u
6
10u
5
23u
4
2u
3
+ 16u
2
3u 1
c
5
u
11
3u
10
+ 6u
8
2u
7
2u
6
+ 3u
5
4u
4
+ 2u
3
+ 2u
2
3u + 1
c
6
u
11
u
10
3u
9
+ 5u
7
+ 4u
6
4u
5
4u
4
+ u
3
+ 3u
2
1
c
7
u
11
2u
10
+ ··· 5u 1
c
8
u
11
3u
10
+ ··· u + 1
c
9
u
11
4u
9
+ 6u
8
+ 10u
7
23u
6
10u
5
+ 23u
4
2u
3
16u
2
3u + 1
c
10
u
11
+ u
10
3u
9
+ 5u
7
4u
6
4u
5
+ 4u
4
+ u
3
3u
2
+ 1
c
11
u
11
+ 3u
10
+ ··· u 1
c
12
u
11
7u
10
+ ··· 85u + 29
9
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
17y
10
+ ··· + 9y 1
c
2
, c
5
y
11
9y
10
+ ··· + 5y 1
c
3
, c
7
y
11
14y
10
+ ··· + 21y 1
c
4
, c
9
y
11
8y
10
+ ··· + 41y 1
c
6
, c
10
y
11
7y
10
+ ··· + 6y 1
c
8
, c
11
y
11
+ 7y
10
+ ··· + 3y 1
c
12
y
11
21y
10
+ ··· + 10821y 841
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.636123 + 0.670136I
a = 1.114440 0.543604I
b = 0.780678 + 0.831560I
1.01561 3.68794I 9.46045 + 4.33638I
u = 0.636123 0.670136I
a = 1.114440 + 0.543604I
b = 0.780678 0.831560I
1.01561 + 3.68794I 9.46045 4.33638I
u = 0.579598 + 0.909451I
a = 0.53978 + 1.76442I
b = 1.78870 1.78170I
8.26462 + 1.07707I 11.60559 + 3.04504I
u = 0.579598 0.909451I
a = 0.53978 1.76442I
b = 1.78870 + 1.78170I
8.26462 1.07707I 11.60559 3.04504I
u = 1.16659
a = 0.621653
b = 1.35028
8.04334 20.3040
u = 0.693012 + 0.407011I
a = 0.911623 0.220211I
b = 2.23098 0.93364I
1.97384 + 6.11246I 15.4629 13.1582I
u = 0.693012 0.407011I
a = 0.911623 + 0.220211I
b = 2.23098 + 0.93364I
1.97384 6.11246I 15.4629 + 13.1582I
u = 0.733849
a = 1.28586
b = 0.269849
2.65454 14.9220
u = 0.710299
a = 0.858009
b = 2.21118
6.08165 31.1290
u = 1.59423 + 0.15020I
a = 0.103519 + 0.553154I
b = 0.73498 + 1.21716I
5.41647 2.99510I 12.79336 + 4.15050I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.59423 0.15020I
a = 0.103519 0.553154I
b = 0.73498 1.21716I
5.41647 + 2.99510I 12.79336 4.15050I
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
11
9u
10
+ ··· + 5u 1)(u
16
22u
15
+ ··· + 28u + 1)
c
2
(u
11
+ 3u
10
6u
8
2u
7
+ 2u
6
+ 3u
5
+ 4u
4
+ 2u
3
2u
2
3u 1)
· (u
16
+ 4u
15
+ ··· 2u 1)
c
3
(u
11
+ 2u
10
+ ··· 5u + 1)(u
16
14u
15
+ ··· + 152u
2
32)
c
4
(u
11
4u
9
6u
8
+ 10u
7
+ 23u
6
10u
5
23u
4
2u
3
+ 16u
2
3u 1)
· (u
16
+ u
15
+ ··· 184u 85)
c
5
(u
11
3u
10
+ 6u
8
2u
7
2u
6
+ 3u
5
4u
4
+ 2u
3
+ 2u
2
3u + 1)
· (u
16
+ 4u
15
+ ··· 2u 1)
c
6
(u
11
u
10
3u
9
+ 5u
7
+ 4u
6
4u
5
4u
4
+ u
3
+ 3u
2
1)
· (u
16
2u
15
+ ··· u 1)
c
7
(u
11
2u
10
+ ··· 5u 1)(u
16
14u
15
+ ··· + 152u
2
32)
c
8
(u
11
3u
10
+ ··· u + 1)(u
16
2u
15
+ ··· + 2u + 1)
c
9
(u
11
4u
9
+ 6u
8
+ 10u
7
23u
6
10u
5
+ 23u
4
2u
3
16u
2
3u + 1)
· (u
16
+ u
15
+ ··· 184u 85)
c
10
(u
11
+ u
10
3u
9
+ 5u
7
4u
6
4u
5
+ 4u
4
+ u
3
3u
2
+ 1)
· (u
16
2u
15
+ ··· u 1)
c
11
(u
11
+ 3u
10
+ ··· u 1)(u
16
2u
15
+ ··· + 2u + 1)
c
12
(u
11
7u
10
+ ··· 85u + 29)(u
16
+ 8u
15
+ ··· 17328u 2417)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
11
17y
10
+ ··· + 9y 1)(y
16
+ 14y
15
+ ··· 540y + 1)
c
2
, c
5
(y
11
9y
10
+ ··· + 5y 1)(y
16
+ 22y
15
+ ··· 28y + 1)
c
3
, c
7
(y
11
14y
10
+ ··· + 21y 1)(y
16
14y
15
+ ··· 9728y + 1024)
c
4
, c
9
(y
11
8y
10
+ ··· + 41y 1)(y
16
+ 15y
15
+ ··· 36576y + 7225)
c
6
, c
10
(y
11
7y
10
+ ··· + 6y 1)(y
16
+ 20y
15
+ ··· 9y + 1)
c
8
, c
11
(y
11
+ 7y
10
+ ··· + 3y 1)(y
16
+ 10y
15
+ ··· 14y + 1)
c
12
(y
11
21y
10
+ ··· + 10821y 841)
· (y
16
+ 38y
15
+ ··· 113705856y + 5841889)
15